
Journal Pre-proof

Incremental measurement of structural entropy for dynamic graphs

Runze Yang, Hao Peng, Chunyang Liu and Angsheng Li

PII: S0004-3702(24)00111-5

DOI: https://doi.org/10.1016/j.artint.2024.104175

Reference: ARTINT 104175

To appear in: Artificial Intelligence

Received date: 12 July 2023

Revised date: 29 May 2024

Accepted date: 21 June 2024

Please cite this article as: R. Yang, H. Peng, C. Liu et al., Incremental measurement of structural entropy for dynamic graphs, Artificial Intelligence, 104175,
doi: https://doi.org/10.1016/j.artint.2024.104175.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for
readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its
final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2024 Published by Elsevier.

https://doi.org/10.1016/j.artint.2024.104175
https://doi.org/10.1016/j.artint.2024.104175

Incremental Measurement of Structural Entropy for

Dynamic Graphs

Runze Yanga, Hao Pengb,∗, Chunyang Liuc, Angsheng Lia

aState Key Laboratory of Software Development Environment, School of Computer
Science and Engineering, Beihang University, Beijing, 100191, China

bSchool of Cyber Science and Technology, Beihang University, Beijing, 100191, China
cDidi Chuxing, Beijing, 100193, China

Abstract

Structural entropy is a metric that measures the amount of information em-
bedded in graph structure data under a strategy of hierarchical abstract-
ing. To measure the structural entropy of a dynamic graph, we need to
decode the optimal encoding tree corresponding to the best community par-
titioning for each snapshot. However, the current methods do not support
dynamic encoding tree updating and incremental structural entropy compu-
tation. To address this issue, we propose Incre-2dSE, a novel incremental
measurement framework that dynamically adjusts the community partition-
ing and efficiently computes the updated structural entropy for each updated
graph. Specifically, Incre-2dSE includes incremental algorithms based on two
dynamic adjustment strategies for two-dimensional encoding trees, i.e., the
naive adjustment strategy and the node-shifting adjustment strategy, which
support theoretical analysis of updated structural entropy and incrementally
optimize community partitioning towards a lower structural entropy. We
conduct extensive experiments on 3 artificial datasets generated by Hawkes
Process and 3 real-world datasets. Experimental results confirm that our
incremental algorithms effectively capture the dynamic evolution of the com-
munities, reduce time consumption, and provide great interpretability.

Keywords:
Structural entropy, dynamic graph, boundedness and convergence analysis,
incremental algorithm

∗Corresponding author
Email address: penghao@buaa.edu.cn (Hao Peng)

Preprint submitted to Artificial Intelligence June 27, 2024

1. Introduction

In 1953, Shannon [1] proposed the problem of structural information
quantification to analyze communication systems. Since then, many informa-
tion metrics of graph structures [2, 3, 4, 5] have been presented based on the
Shannon entropy of random variables. In recent years, Li et al. [6, 7] pro-
posed an encoding-tree-based graph structural information metric, namely
structural entropy, to discover the natural hierarchical structure embedded
in a graph. The structural entropy has been used extensively in the fields of
biological data mining [8, 9], information security [10, 11], and graph neural
networks [12, 13, 14], etc.

The computation of structural entropy [6] consists of three steps: encod-
ing tree construction, node structural entropy calculation, and total struc-
tural entropy calculation. Firstly, the graph node set is hierarchically divided
into several communities (shown in Fig. 1(a)) to construct a partitioning tree,
namely an encoding tree (shown in Fig. 1(b)). Secondly, the total node de-
gree and cut edge number of each community are counted to compute the
structural entropy of each non-root node in the encoding tree. Thirdly, the
structural entropy of the whole graph is calculated by summing up the node
structural entropy. In general, smaller structural entropy corresponds to bet-
ter community partitioning. Specifically, the minimized structural entropy,
namely the graph structural entropy, corresponds to the optimal encoding
tree, which reveals the best hierarchical community partitioning of the graph.

In dynamic scenarios, a graph evolves from its initial state to many up-
dated graphs during time series [15]. To efficiently measure the quality of
evolving community partitioning, we need to incrementally compute the up-
dated structural entropy at any given time. Unfortunately, the current struc-
tural entropy methods [6, 7] do not support efficient incremental computa-
tion due to two challenges. The first challenge is that the encoding tree
needs to be reconstructed for every updated graph, which leads to enor-
mous time consumption. To address this issue, we propose two dynamic
adjustment strategies for two-dimensional encoding trees1, namely the naive

1“Two-dimensional encoding tree” means the height of the encoding tree is restricted
to 2. The corresponding structural entropy of the two-dimensional encoding tree is named
“two-dimensional structural entropy”.

2

... ...

A.2

A.1
A

B

C

... ...

...

a) Graph b) Enoding Tree

Label：{v1}

Label：{v1, v2, v3, v4}

Label：{v1, v2, ..., vn}

CA B

Root

A.1 A.2

v1

v2

v3v4

Figure 1: a) A graph containing three communities A, B, and C, where A is divided into
two sub-communities A.1 and A.2. b) An encoding tree of the left graph. Each leaf node
corresponds to a single graph node. Each branch node corresponds to a community. The
root node corresponds to the graph node set.

adjustment strategy and the node-shifting adjustment strategy. The former
strategy maintains the old community partitioning, and supports theoretical
structural entropy analysis, while the latter dynamically adjusts the commu-
nity partitioning by moving nodes between communities based on the prin-
ciple of structural entropy minimization. The second challenge is the high
time complexity of structural entropy computation by the traditional defini-
tion. To tackle this problem, we design an incremental framework, namely
Incre-2dSE, for efficiently measuring the updated two-dimensional structural
entropy. To be specific, Incre-2dSE first utilizes the two dynamic adjustment
strategies to generate Adjustments, i.e., the changes of important statistics
from the original graph to the updated graph and then uses the Adjustments
to calculate the updated structural entropy by newly designed incremental
formula. Additionally, we also generalize our incremental methods to undi-
rected weighted graphs and conduct a detailed discussion on the calculation
of one-dimensional structural entropy for directed weighted graphs.

We conduct extensive experiments on 3 artificial dynamic graph datasets
generated by Hawkes Process and 3 real-world datasets on the application
of real-time monitoring of community partitioning quality (two-dimensional
structural entropy) and community optimization. Comprehensive experi-
mental results show that our methods effectively capture the community
evolution features and significantly reduce the time consumption with great
interpretability. All source code and data of this project are publicly available
at https://github.com/SELGroup/IncreSE.

The main contributions of this paper are as follows:

3

• Proposing two dynamic adjustment strategies for two-dimensional en-
coding trees to avoid the reconstruction of the encoding tree for every
updated graph.

• Designing an incremental framework for efficiently measuring the up-
dated two-dimensional structural entropy with low time complexity.

• Extending the proposed methods to weighted graphs and providing new
incremental computation methods for directed weighted graphs.

• Conducting extensive experiments on artificial and real-world datasets
to demonstrate the effectiveness and efficiency of our method in dy-
namic measurement of community partitioning quality.

The article is structured as follows: Section 2 outlines the definitions
and notations. Section 3 describes the dynamic adjustment strategies. The
algorithms are detailed in Section 4, and Section 5 gives discussion on more
complex graphs. The experiments are discussed in Section 6. Section 7
presents the related works before concluding the paper in section 8.

2. Definitions and Notations

In this section, we summarize the notations in Table 1, and formalize
the definition of Incremental Sequence, Dynamic Graph, Encoding Tree, and
Structural Entropy as follows.

Definition 1 (Incremental Sequence). An incremental sequence is a set of
incremental edges represented by ξ = {< (v1, u1), op1 >,< (v2, u2), op2 >
, ..., < (vn, un), opn >}, where (vi, ui) denotes an incremental edge ei with
two endpoints vi and ui. The operator opi ∈ {+,−} represents that the edge
ei will be added to or removed from a graph. The number of the incremental
edges n is named the incremental size.

Definition 2 (Dynamic Graph). In this work, a dynamic graph is defined
as a series of snapshots of a temporal, undirected, unweighted, and connected
graph G = {G0, G1, ..., GT}. G0 = (V0, E0) denotes the initial state and
Gt = (Vt, Et) denotes the updated graph at time t (1 ≤ t ≤ T). To describe
the temporal dynamic graph, we suppose that an incremental sequence ξt
arrives at each non-zero time t. The updated graph Gt is generated by orderly
combining all new edges and nodes introduced by ξt with Gt−1, i.e., Gt :=

4

Table 1: Glossary of Notations.

Notation Description

G Graph
V ; E Node set; Edge set
v; e Node; Edge
di; dv Node degree of node vi; Node degree of v
m The total edge number of G

T Encoding tree
λ The root node of an encoding tree
α The non-root node in an encoding tree, i.e., the community ID
A The set of all 1-height nodes in an encoding tree
Tα The label of α, i.e., the node community corresponding to α
Vα The volume of Tα

gα The cut edge number of Tα

G Dynamic graph
G0 Initial state of a dynamic graph
Gt The updated graph at time t
ξt Incremental sequence at time t
ξ1→t Cumulative incremental sequence at time t
n Incremental size
δ(v) The degree incremental of v
δV (α) The volume incremental of Tα

δg(α) The cut edge number incremental of Tα

ϕλ The degree-changed node set
A The set of 1-height tree nodes whose volume or cut edge

number change

HT (G) The structural entropy of G by T
HT

GI(G, n) Global Invariant with incremental size n
∆L Local Difference, i.e., the approximation error between HT (G)

and HT
GI(G, n)

5

CMB(Gt−1, ξt). We further define the cumulative incremental sequence at
time t, denoted by ξ1→t, as the sequence formed by sequentially concatenating
sequences ξ1, ξ2, ..., ξt, and then we have Gt := CMB(G0, ξ1→t).

Definition 3 (Encoding Tree). The concept of the encoding tree is the same
as “the Partitioning Tree” proposed in the previous work [6]. The encoding
tree T of a graph G = (V , E) is an undirected tree that satisfies the following
properties:

1. The root node λ in T has a label Tλ = V.
2. Each non-root node α in T has a label Tα ⊂ V.
3. For each node α in T , if β1, β2, . . . , βk are all immediate successors of

α, then Tβ1 , . . . , Tβk
is a partitioning of Tα.

4. The label of each leaf node γ is a single node set, i.e., Tγ = {v}.
5. h(α) denotes the height of a node α in T . Let h(λ) = 0 and h(α) =

h (α−)+1, where α− is the parent of α. The height of the encoding tree
h(T), namely the dimension, is equal to the maximum of h(γ).

Definition 4 (Structural Entropy). The structural entropy is defined by Li
and Pan [6]. We follow this work and state the definition below. Given an
undirected, unweighted, and connected graph G = (V , E) and its encoding tree
T , the structural entropy of G by T is defined as:

HT (G) =
∑

α∈T ,α̸=λ

− gα
2m

log
Vα

Vα−
, (1)

where m is the total edge number of G; gα is the cut edge number of Tα, i.e.,
the number of edges between nodes in and not in Tα; Vα is the volume of Tα,
i.e., the sum of the degrees of all nodes in Tα; log(·) denotes logarithm with a
base of 2. We name HT (G) as the K-dimensional structural entropy if T ’s
height is K.

The graph structural entropy of G is defined as:

H(G) = min
T

{
HT (G)

}
, (2)

where T ranges over all possible encoding trees.
If the height of T is restricted to K, the K-dimensional graph structural

entropy of G is defined as:

HK(G) = min
T

{
HT (G)

}
, (3)

6

where T ranges over all the possible encoding trees of height K. The encoding
tree corresponding to HK(G), which minimizes the K-dimensional structural
entropy, is named the optimal K-dimensional encoding tree.

3. Dynamic Adjustment Strategies for Two-Dimensional Encoding
Trees

In this section, we first introduce the naive adjustment strategy and an-
alyze the updated structural entropy under this strategy. Then, we describe
the node-shifting adjustment strategy which leads to lower structural en-
tropy, and provide its theoretical proof. Finally, we give further discussion
between the two proposed dynamic adjustment strategies.

3.1. Naive Adjustment Strategy

In this part, we first provide a formal description of the naive adjustment
strategy. Next, we introduce two metrics, Global Invariant and Local Differ-
ence, to realize the incremental computation of updated structural entropy.
Finally, we analyze the boundedness and convergence of the Local Difference.

3.1.1. Strategy Description

Before we introduce the naive adjustment strategy, we first discuss the
form of the two-dimensional encoding trees in detail and the formula of their
corresponding structural entropy. For all possible two-dimensional encoding
trees, whenever there is a leaf node γ (Tγ = {vk}) whose height is 1 (like
Fig. 2(b)), we can connect it with a child node γ+ with the same label
Tγ+ = {vk} to make all leaf nodes have height 2 (Fig. 2(c)). At this time,
the structural entropy remains unchanged since the additional term induced
by γ+, i.e. − dk

2m
log dk

dk
, equals to 0.

kv

a) Example graph b) Two-dimensional encoding

tree with an 1-height leaf node

c) Two-dimensional encoding tree

in which all leaves are 2-height

{ }kT v =
{ }kT v =

{ }kT v
 +
=

Figure 2: An example graph with its two equivalent two-dimensional encoding trees.

In other words, the two encoding trees in Fig. 2 are equivalent. Therefore,
in this paper, we only consider the two-dimensional encoding trees where the

7

height of all leaf nodes is 2 for the sake of brevity. Given a graph G and its
two-dimensional encoding tree T , the two-dimensional structural entropy of
G by T can uniformly be formulated as:

HT (G) =
∑
αi∈A

(− gαi

2m
log

Vαi

2m
+

∑
vj∈Tαi

− dj
2m

log
dj
Vαi

), (4)

where A denotes the set of 1-height nodes in T , i.e., A = {α in T |h(α) = 1}.
Now we present the description of the naive adjustment strategy. This

strategy comprises two parts: the edge strategy and the node strategy. The
edge strategy dictates that incremental edges do not alter the encoding tree’s
structure. On the other hand, the node strategy specifies that when a new
node v connects with an existing node u (shown in Fig. 3(a)), and u corre-
sponds to a leaf node η in the two-dimensional encoding tree, i.e., Tη = {u}
(shown in Fig. 3(b)), a new leaf node γ with a label Tγ = {v} will be set
as an immediate successor of η’s parent (α in Fig. 3(d)), instead of another
1-height node (β in Fig. 3(f)). We can describe the modification of the en-
coding trees from the community perspective. Specifically, the incremental
edges do not change the communities of the existing nodes while the new
node is assigned to its neighbor’s community (Tα in Fig. 3(c)), rather than
another arbitrary community (Tβ in Fig. 3(e)). Obviously, we can get the
updated encoding tree, i.e., the updated community partitioning, in the time
complexity of O(n) given an incremental sequence of size n. To ensure that
the node strategy minimizes the updated structural entropy most of the time,
we give the following theorem.

𝑇𝛼
𝑇𝛽 𝑣

𝑢

𝑇𝛼
𝑇𝛽 𝑣

𝑢

𝛼𝛽 𝛼𝛽

𝑇𝛾={𝑣}

𝛾η

𝑇η={𝑢}

𝛼𝛽

𝛾 η

𝑇η={𝑢} 𝑇𝛾={𝑣}

𝑇𝛼𝑇𝛽
𝑣

𝑢

𝑇𝛼𝑇𝛽
𝑣

𝑢

b) Original Encoding Tree

a) New Node Coming e) Incorrect Communities

d) Correct Encoding Tree f) Incorrect Encoding Tree

c) Correct Communities

𝑇𝛼

𝑇𝛽 𝑣

𝑢

𝑇𝛼

𝑇𝛽 𝑣

𝑢

η

𝑇η={𝑢}

Figure 3: An example of the node strategy for adjusting two-dimensional encoding trees.

8

Theorem 1. Suppose that a new graph node v is connected to an existing
node u, where {u} ⊆ Tα. If

2m+2
Vα+2

≥ e, we have:

HT ′

v→α(G
′) < HT ′

v→β ̸=α(G
′), (5)

where HT ′
v→α(G

′) denotes the updated structural entropy when the new node
v is assigned to u’s community Tα, i.e., {v} ⊂ Tα, and HT ′

v→β ̸=α(G
′) repre-

sents the updated structural entropy when v is allocated to another arbitrary
community Tβ ̸=α, i.e., {v} ⊂ Tβ ̸=α.

Proof. Differentiating the updated structural entropy of the two cases
above, we can obtain:

∆HT ′
(G′) =HT ′

v→α(G
′)−HT ′

v→β ̸=α(G
′)

=
1

2m+ 2
[log

Vα + 2

2m+ 2
+ (gα − Vα) log

Vα + 1

Vα + 2
− (gβ − Vβ) log

Vβ

Vβ + 1
].

(6)

Here we define:

f1(g, V) =(g − V) log
V + 1

V + 2
, (7)

f2(g, V) =− (g − V) log
V

V + 1
. (8)

Let θ (0 ≤ θ < 1) be the minimum proportion of the in-community edges in
each community, i.e.,

θ = min
α
{Vα − gα

Vα

}. (9)

Since 1 ≤ V < 2m and 0 < g ≤ (1− θ)V , we have:

f1(g, V) < −V log
V + 1

V + 2
<

1

ln 2
= log e, (10)

f2(g, V) ≤ θV log
V

V + 1
≤ θ log

1

2
= −θ. (11)

So

∆HT ′
(G′) <

1

2m+ 2
(log

Vα + 2

2m+ 2
+ log e− θ)

=
1

2m+ 2
log(

Vα + 2

2m+ 2
· 2−θe).

(12)

9

Therefore, if the following condition holds:

2m+ 2

Vα + 2
≥ max{2−θe} = e, (13)

then Eq. (5) holds, and thus Theorem 1 is proven.
According to Theorem 1, our node strategy minimizes the updated struc-

tural entropy when the total volume of the whole graph 2m is approximately
larger than e times the maximum volume Vm of all communities. Usually,
we have θ ≈ 1, so the real condition is much looser.

3.1.2. Global Invariant and Local Difference

In this part, we introduce two quantities, Global Invariant and Local
Difference, to realize the approximation and the fast incremental calculation
of the updated structural entropy by naive adjustment strategy. When an
incremental sequence ξ with size n is applied to a graph G, resulting in a new
graph G′ and its corresponding two-dimensional encoding tree T ′ using the
naive adjustment strategy, the updated two-dimensional structural entropy
can be expressed as:

HT ′
(G′) =

∑
αi∈A

(−
g′αi

2m+ 2n
log

V ′
αi

2m+ 2n
+

∑
vj∈Tαi

−
d′j

2m+ 2n
log

d′j
V ′
αi

). (14)

An intuitive way to calculate the updated two-dimensional structural en-
tropy is to update the variables in Eq. (4) and then compute via the updated
formula Eq. (14). However, the incremental size n affects all terms in the
summation equation in Eq. (14). Therefore, the updating and calculation
process costs at least O(|V|), which is huge when the graph becomes ex-
tremely large. So how can we find an incremental formula with a smaller
time complexity only related to the incremental size n? An intuitive at-
tempt is to make a difference between the updated structural entropy and
the original one to try to compute the incremental entropy in O(n). Never-
theless, the fact that m changes to m + n in all terms of Eq. (14) makes it
difficult to derive a concise formula of O(n) from the difference equation.

To address this issue, we here introduce Global Invariant and Local Dif-
ference. We define the Global Invariant (Definition 5) as an approximate
updated structural entropy that only updates m to m + n in Eq. (4) and
keeps other variables unchanged. The Local Difference (Definition 6) is de-
fined as the difference between the updated structural entropy and the Global

10

Invariant, which can also be regarded as the approximate error. Obviously,
we can get the Global Invariant in the time complexity of O(1) if SN , SC , and
SG are saved. The Local Difference can also be computed in O(n) given the
necessary incremental changes. Overall, the updated two-dimensional struc-
tural entropy can be calculated in O(n) by computing and summing up the
Global Invariant and the Local Difference. In the experimental part, we use
a more explicit and practiced form of the structural entropy update formula
(Eq. (55)) derived from the Global Invariant and the Local Difference.

Definition 5 (Global Invariant). Given an original graph G and its two-
dimensional encoding tree T , the Global Invariant is defined as an approx-
imate value of the updated structural entropy after an incremental sequence
with size n, i.e.,

HT
GI(G, n) =

∑
αi∈A

(− gαi

2m+ 2n
log

Vαi

2m+ 2n
+

∑
vj∈Tαi

− dj
2m+ 2n

log
dj
Vαi

)

= − 1

2m+ 2n
(SN + SC + SG), (15)

where

SN =
∑
vi∈V

di log di, (16)

SC =
∑
αi∈A

(gαi
− Vαi

) log Vαi
, (17)

SG = −
∑
αi∈A

gαi
log(2m+ 2n). (18)

Definition 6 (Local Difference). Given the updated graph G′, the updated
two-dimensional encoding tree T ′, and incremental size n, the Local Differ-
ence is defined as the difference between the exact updated two-dimensional
structural entropy and the Global Invariant, as shown below:

∆L = HT ′
(G′)−HT

GI(G, n) = − 1

2m+ 2n
(∆SN +∆SC +∆SG), (19)

where

∆SN =
∑
vk∈ϕλ

[(dk + δ(vk)) log(dk + δ(vk))− dk log dk], (20)

11

∆SC =
∑
α∈A

[(gα + δg(α)− Vα − δV (α)) log(Vα + δV (α))− (gα − Vα) log Vα],

(21)

∆SG =−
∑
α∈A

δg(α) log(2m+ 2n). (22)

Here, δ(vk) denotes the incremental change in degree d′k−dk, δV (α) represents
the incremental change in volume V ′

α − Vα, δg(α) represents the incremental
change in cut edge g′α − gα, ϕλ denotes the set of nodes that have changes in
degree {vk ∈ V ′|δ(vk) ̸= 0}, and A denotes the set of 1-height tree nodes that
have changes in Vα or gα, i.e., A = {α ∈ A′|δV (α) ̸= 0 or δg(α) ̸= 0}.

3.1.3. Boundedness Analysis

According to Eq. (19), the bounds of ∆L can be obtained by analyzing its
components, namely ∆SN , ∆SC and ∆SG. First, we analyze the maximum
and minimum values of ∆SN . We define

sN(d, x) = (d+ x) log(d+ x)− d log d. (23)

Since sN(d, n) is monotonically increasing with d, ∆SN takes the maximum
value when n new incremental edges connect the two nodes with the largest
degree. Therefore, we have

∆SN ≤ 2sN(dm, n), (24)

where dm denotes the maximum degree in G. Since multiple edges are not
allowed, the equality may hold if and only if n = 1. When each of the
n incremental edges connects a one-degree node and a new node, ∆SN is
minimized:

∆SN ≥ nsN(1, 0). (25)

Second, we analyze the bounds of ∆SC and ∆SG. For convenience, we define

∆SCG = ∆SC +∆SG. (26)

We commence by analyzing the bound of ∆SCG when adding one new edge.
If a new edge is added between two communities Tα1 and Tα2 , we can get

∆SCG =(gα1 − Vα1) log(Vα1 + 1)− (gα1 − Vα1) log Vα1

+ (gα2 − Vα2) log(Vα2 + 1)− (gα2 − Vα2) log Vα2 − 2 log(2m+ 2).
(27)

12

Thus we have

∆SCG ≥2Vm log(
Vm

Vm + 1
)− 2 log(2m+ 2), (28)

and

∆SCG ≤− 2 log(2m+ 2), (29)

where Vm denotes the maximum volume of all Tα. If a new edge is added
within a single community Tα (or a new node is connected with an existing
node in Tα), we have

∆SCG =(gα − Vα − 2) log(Vα + 2)− (gα − Vα) log Vα. (30)

Then we can obtain

∆SCG ≥− (Vm + 2) log(Vm + 2) + Vm log Vm, (31)

and

∆SCG ≤− 2 log(Vmin + 2), (32)

where Vmin denotes the minimum volume of all Tα. We next analyze the
bound of ∆SCG when adding n new edges. When the n edges are all between
the two communities with the largest volume, we have:

∆SCG ≥2Vm log(
Vm

Vm + n
)− 2n log(2m+ 2n)

>− 2n− 2n log(2m+ 2n),

(33)

and ∆SCG takes the minimum value:

∆SCGmin =− 2n− 2n log(2m+ 2n). (34)

When each of the n edges is added within n communities with the smallest
volume, respectively, ∆SCG takes its maximum value:

∆SCGm =− 2n log(Vmin + 2). (35)

Finally, we can get a lower bound of ∆L as

LB(∆L) =− 1

2m+ 2n
(2sN(dm, n) + ∆SCGm)

13

=
1

m+ n
[dm log dm − (dm + n) log (dm + n) + n log(Vmin + 2)].

(36)

An upper bound of ∆L is as follows:

UB(∆L) = − 1

2m+ 2n
(nsN(1, 0) + ∆SCGmin)

=
n log(m+ n) + 5

2
n

m+ n
. (37)

Discussion: The boundedness analysis gives the lower and upper bound of
the Local Difference. This suggests that when we compute Global Invariant
to quickly get an approximate value of the updated structural entropy, the
approximate error is bounded and decreases as the graph grows larger and
thus the validity and accuracy of the approximation are guaranteed.

3.1.4. Convergence Analysis

In this section, we analyze the convergence of the Local Difference as well
as its first-order absolute moment. To denote that one function converges at
the same rate or faster than another function, we use the notation g(m) =

O(f(m)), which is equivalent to limm→∞
g(m)
f(m)

= C, where C is a constant.

Theorem 2. Given the incremental size n, the Local Difference converges at
the rate of O(logm

m
), represented as:

∆L =O(
logm

m
). (38)

Proof. The lower bound of ∆L is given by:

LB(∆L) =
dm log dm − (dm + n) log (dm + n)

m+ n
+

n log(Vmin + 2)

m+ n

≥m logm− (m+ n) log (m+ n)

m+ n
+

n log(2 + 2)

m+ n
,

≥ 1

m+ n
[log(1− n

m+ n
)m − n log(m+ n)]

=O(
logm

m
). (39)

14

Similarly, the upper bound is given by:

UB(∆L) =
n log(m+ n) + 5

2
n

m+ n

=O(
logm

m
). (40)

Since

LB(∆L) ≤ ∆L ≤ UB(∆L), (41)

Theorem 2 is proved.
It follows that the difference between the exact value of the updated two-

dimensional structural entropy and the Global Invariant converges at the
rate of O(logm

m
).

Definition 7. Let X be a random variable representing the incremental size
n. We remind that E[X] = n.

Theorem 3. The first-order absolute moment of the Local Difference con-
verges at the rate of O(logm

m
):

E[|∆L|] = O(
logm

m
). (42)

Proof. We can represent the expectation of the lower bound of ∆L as:

E[|LB(∆L)|] =E[|dm log dm − (dm +X) log(dm +X)

m+X
+

n log(Vmin + 2)

m+X
|]

≤E[(m+X) log (m+X)−m logm

m+X
] + E[

X log(m+ 2)

m+X
]

≤m logm− (m+ n) log (m+ n)

m+ n
+

n log(m+ 2)

m+ n

=O(
logm

m
). (43)

Similarly, the expectation of the upper bound is given by:

E[|UB(∆L)|] =E[
X log(m+X) + 5

2
X

m+X
]

15

≤
n log(m+ n) + 5

2
n

m+ n

=O(
logm

m
). (44)

Finally, since

0 ≤ E[|∆L|] ≤ max{E[|LB(∆L)|],E[|UB(∆L)|]}, (45)

Theorem 3 is proved.
Discussion: The convergence analysis gives proof of the convergence of

the Local Difference and its first-order absolute moment. That is, when we
use Global Invariant to approximate the updated structural entropy, the ap-
proximate error and its absolute value’s expectation both converge to 0 no
slower than O(logm

m
) as the graph edge number m grows larger, suggesting a

high level of confidence that our approximation is reliable. Additionally, the
convergence analysis also demonstrates that the updated structural entropy is
mainly contributed by the incremental size n other than the position of the
incremental edges when the graph is extremely large. It is because when the
graph grows larger, we can approximate the updated structural entropy with
an approximate error that converges to 0 by simply changing m to m+ n.

3.1.5. Limitations

The limitations of the naive adjustment strategy are listed below. First,
this strategy cannot deal with multiple incremental edges at the same time,
e.g. a new node appears connecting with two different existing nodes. An al-
ternative solution is to arrange all incremental edges at a certain time stamp
into a sequence with which we can add the edges one by one while keeping
the connectivity of the graph. In this way, the community of newly intro-
duced nodes is inevitably related to the input order of the incremental edges.
Second, it cannot handle edge or node deletions. Third, the community of
the existing nodes remains unchanged, which is sub-optimal in most cases.

3.2. Node-Shifting Adjustment Strategy

Although the naive adjustment strategy can quickly obtain an updated
two-dimensional encoding tree and its corresponding structural entropy, we
still need a more effective strategy to get a better community partitioning
towards lower structural entropy. Therefore, we propose another novel dy-
namic adjustment strategy, namely node-shifting, by moving nodes to their

16

optimal preference communities (Definition 8) iteratively. Different from the
naive adjustment strategy, edge changes can change the communities of the
existing nodes to minimize the structural entropy. Besides, this strategy sup-
ports multiple incremental edges at the same time and the removal of the
existing edges. Therefore, the node-shifting adjustment strategy fully over-
comes the limitations of the naive adjustment strategy listed in Section 3.1.5.
In the following, we first describe the node-shifting adjustment strategy in
detail and then prove that the node’s movement towards its optimal prefer-
ence community can get the lowest structural entropy greedily. Finally, we
discuss the limitations of this strategy.

3.2.1. Strategy Description

We first define the optimal preference community (OPC) (Definition 8)
as the best community for a target node, i.e., if the target node moves into
its OPC, the overall two-dimensional structural entropy must be the lowest
compared to other community other than OPC. Then the node-shifting ad-
justment strategy can be described as follows: (1) let involved nodes be all
nodes that appeared in the incremental sequence; (2) for each involved node,
move it to its OPC; (3) update the involved nodes to all nodes connected with
the shifted nodes but in different communities, then repeat step (2).

Definition 8 (Optimal Preference Community (OPC)). Given a graph G =
(V , E) and a target node vt ∈ V, the optimal preference community of vt is
defined as the community Tα∗ in which

α∗ =

{
argminα[(gα − Vα) log

Vα

Vα+dt
+ 2d(α) log Vα+dt

2m
], vt /∈ Tα;

argminα[(gα − Vα + dt + d(α)) log Vα−dt
Vα

+ 2d(α) log Vα

2m
], vt ∈ Tα,

(46)

where d(α) denotes the number of the edges connected between vt and Tα.

Fig. 4 and Fig. 5 give examples to illustrate the node-shifting adjustment
strategy in different situations. Fig. 4 shows how incremental edges affect
community partitioning. In Fig. 4(a), the graph is divided into 2 communities
Tα and Tβ. In Fig. 4(b), 4 incremental edges (red dotted) are inserted into
the graph. Then all involved nodes (red outlined) are checked for moving
into their OPCs. In this step, one green node is shifted from Tα to Tβ

(denoted by the red arrow). In Fig. 4(c), the shifted node in the previous step
“sends messages” (red dotted arrows) to its neighbors in Tα (red outlined).

17

𝑇𝛼

𝑇𝛽

𝑇𝛼

𝑇𝛽
𝑇𝛼

𝑇𝛽

𝑇𝛼

𝑇𝛽
𝑇𝛼

𝑇𝛽
𝑇𝛼

𝑇𝛽

(b)(a) (c)

(d) (e) (f)

Figure 4: An example of the node-shifting adjustment strategy for adding new edges.

The nodes that received the message (red outlined) are then checked for
shifting. At this time, another green node moves into Tβ. In Fig. 4(d)-(e),
the graph follows the above process to continue the iterative update. The
final community partitioning is shown in Fig. 4(f). Fig. 5 shows how new
nodes are assigned to communities. Fig. 5(a) gives a 7 nodes graph with
2 communities. In Fig. 5(b), 3 new nodes (white filled) are added with 7
incremental edges and they belong to no community. Then all of them and
their existing neighbors become involved nodes. Next, the upper new node is
assigned to Tα because Tα is determined as its OPC. Also, the lower two new
nodes are moved into their OPCs. In Fig. 5(c), the new involved nodes (red
outlined) are checked. Fig. 5(d) shows the final state of this node-shifting
process.

3.2.2. Theoretical Proof

In this part, we provide a simplified model (Fig. 6) to theoretically derive
the OPC’s solution formula (Eq. (46)). In the graph of this model, there
exists r communities Tα1 , Tα2 , ..., Tαr . There is also a target node vt which
does not belong to any community. The number of the edges connected
between vt and Tαi

is denoted by d(i). The volume and the number of the cut
edges of Tαi

are denoted by Vi and gi, respectively. Then we have Theorem 4.

Theorem 4. Suppose that the node vt is moving into community Tαk
, k ∈

{1, 2, ..., r}. The updated structural entropy is minimized when vt moves into

18

𝑇𝛼 𝑇𝛽

𝑇𝛼 𝑇𝛽

𝑇𝛼 𝑇𝛽

𝑇𝛼 𝑇𝛽

(b)(a)

(d)(c)

Figure 5: An example of the node-shifting adjustment strategy for adding new nodes.

1
T

2
T

3
T

tv

Figure 6: A simplified model for theoretical analysis.

Tαk∗ where

k∗ = argmin
k

[(gk − Vk) log
Vk

Vk + dt
+ 2d(k) log

Vk + dt
2m

]. (47)

Proof. Let Hk be the two-dimensional structural entropy after vt moves
into Tαk

. Then Hk is given by

Hk =
∑
αi ̸=αk

(− gi
2m

log
Vi

2m
+

∑
vj∈Tαi

− dj
2m

log
dj
Vi

) + (−gk + dt − 2d(k)

2m
log

Vk + dt
2m

+
∑

vq∈Tαk
/{vt}

− dq
2m

log
dq

Vk + dt
− dt

2m
log

dt
Vk + dt

).

(48)
Therefore, the structural entropy is minimized when vt moves into Tαk∗ where

k∗ = argmin
k

Hk. (49)

19

𝑇𝛼 𝑇𝛽 𝑇𝛼 𝑇𝛽

Figure 7: An example where the node-shifting adjustment strategy does not converge.
The left is a graph added with two incremental edges which cause two nodes to shift. The
right shows the updated communities after the first iteration and the future movement at
the second iteration. After the second iteration, the graph becomes the left again.

Let the structural entropy before the node movement be H̃ given by

H̃ =
∑
αi

(− gi
2m

log
Vi

2m
+

∑
vj∈Tαi

− dj
2m

log
dj
Vi

) + (− dt
2m

log
dt
2m
− dt

2m
log

dt
dt
).

(50)
Since H̃ is independent of k, we have

k∗ =argmin
k

2m(Hk − H̃)

= argmin
k

[(gk − Vk) log
Vk

Vk + dt
+ 2d(k) log

Vk + dt
2m

].
(51)

Therefore Theorem 4 is proved.
In practice, all nodes belong to their communities. We can first move

the target node out of its community, and then use Eq. (47) to determine
the OPC. This process is equivalent to directly using Definition 8 without
moving out the target node.

3.2.3. Limitations

The limitations of the node-shifting adjustment strategy are listed below.
First, it is hard to give the bound of the gap between the Global Invariant
and the updated structural entropy for further theoretical analysis. Second,
the node-shifting adjustment strategy may not converge in some cases (Fig. 7
gives an example), which forces us to set the maximum number of iterations.

3.3. Further Discussion between the Two Dynamic Adjustment Strategies

Similarities: (1) Both dynamic adjustment strategies are designed to
incrementally change the original two-dimensional encoding trees to adapt

20

the incremental edges and nodes in dynamic scenarios. (2) The time com-
plexities for computing the updated structural entropy of both strategies are
significantly lower than the original calculation formula (detailed analysis is
shown in Section 4.3). (3) Both strategies cannot handle the birth of new
communities and the dismission of the existing communities.

Differences: (1) The focuses of the two strategies are different. The
naive adjustment strategy emphasizes theoretical analysis, such as bound-
edness and convergence analysis, and acts as a fast incremental baseline in
experimental evaluations. By contrast, the node-shifting adjustment strat-
egy mainly focuses on addressing the limitations of the naive strategy (Sec-
tion 3.1.5) and the dynamic optimization of the existing communities towards
a lower structural entropy. (2) The ways of updating encoding trees, or up-
dating community partitionings, of these two strategies are different. In the
naive adjustment strategy, new edges do not change the communities of the
existing nodes, and new nodes are assigned to the direct neighbors’ com-
munities. While in the node-shifting adjustment strategy, the influence on
community adjustment of new edges is considered and the new nodes’ com-
munity is also determined by the incremental edges. (3) The time complexity
of the naive adjustment strategy is fixed while that of the node-shifting strat-
egy grows nearly linearly with the iteration number N . Experiments show
that the naive strategy is faster than the node-shifting strategy with N ≥ 5
in most cases (Fig. 13).

4. Incre-2dSE: an Incremental Measurement Framework of the Up-
dated Two-Dimensional Structural Entropy

4.1. Definitions

In this part, we present the definitions of Structural Data, Structural
Expressions, and Adjustment, which will be employed in subsequent sections.

Definition 9 (Structural Data). Given a graph G, the Structural Data of G
is defined as follows:

1. (node level) the degree di of each vi ∈ V;
2. (community level) the volume Vα and the cut edge number gα;

3. (graph level) the total edge number m;

4. (node-community map) the community ID vi belongs to, denoted by
α(vi) ∈ A where vi ∈ Tα(vi);

21

5. (community-node map) the community Tα of each α ∈ A.

Definition 10 (Structural Expressions). The Structural Expressions of G
are defined as follows:

1. (node level)

ŜN =
∑
d∈D

kdd log d, (52)

where kd denotes the node number of each d ∈ D while D denotes the
set of all distinct degrees in G;

2. (community level)

ŜC =
∑
α∈A

(gα − Vα) log Vα; (53)

3. (graph level)

ŜG = −
∑
α∈A

gα. (54)

Definition 11 (Adjustment). The Adjustment from the original graph G to
the updated graph G′ is defined as follows:

1. (node level) the degree change δ(v) for each node v ∈ ϕλ and the node
number change δk(d) = k′

d− kd of each d ∈ D, where D denotes the set
of the degrees which have node number changes from G to G′;

2. (community level) the volume change δV (α) and the cut edge number
change δg(α) of each α ∈ A;

3. (graph level) the total edge number change n;

4. (node-community map) the change list of the node-community map
Structural Data denoted by Jn−c = {..., (vi, α′(vi)), ...} where α′(vi) de-
notes the new community ID of vi;

5. (community-node map) the change list of the community-node map
Structural Data denoted by Jc−n = {..., (αi, vj,+/−), ...} where (αi, vj,
+/−) denotes that community Tαi

is updated as Tαi
∪{vj} or Tαi

/{vj}.

22

𝛼𝛽

Original Graph Updated Graph

Incremental Sequence

Original Encoding Tree

𝑇𝛼
𝑇𝛽

Reconstructed Encoding Tree

𝛼𝛽

Structural Expressions

Adjustment

NAGA / NSGA

Adjustment-based

Updating Aglorithm

Updated Structural

Entropy

Updated Structural Data

Structural Data

dd

cc

bbaa

Traditional Offline Algorithm (TOA)

22

iiii

Stage 1: Initializationii

Update

Update

11

Stage 2: Measurement

𝑇𝛼
𝑇𝛽

𝑇𝛼
𝑇𝛽

Figure 8: The outline of Incre-2dSE (including two stages, Initialization and Measure-
ment) and the traditional offline algorithm.

4.2. Outline

The illustration of our incremental framework Incre-2dSE and its static
baseline, the traditional offline algorithm (TOA), is shown in Fig. 8. Incre-
2dSE aims to efficiently measure the updated two-dimensional structural
entropy while dynamically adjusting the community partitioning given the
original graph, the original encoding tree, and the incremental sequences.
This framework consists of two stages, initialization and measurement. In
the initialization stage, the Structural Data (Definition 9), which contains a
graph’s essential data to compute the structural entropy, is extracted from
the original graph and its encoding tree (Fig. 8 i). Then the Structural Ex-
pressions (Definition 10), which are defined as the expressions of the Struc-
tural Data, are computed and saved (Fig. 8 ii). For the same original graph,
Initialization only needs to be performed once. In the measurement stage,
the Adjustment (Definition 11), which is defined as a data structure stor-
ing the changes in degree, volume, and cut edge number from the original
graph to the updated graph, is first generated and saved according to the
structural data and the incremental sequence by the Adjustment generation
algorithm with the naive adjustment strategy (NAGA) or the node-shifting
adjustment strategy (NSGA) (Fig. 8 1). Then, the Adjustment-based incre-
mental updating algorithm (AUIA) is called to gather the Structural Data,
the Structural Expression, and the Adjustment to efficiently calculate the
updated structural entropy and update the Structural Data and the Struc-
tural Expressions (Fig. 8 2). As the baseline, TOA commences by updating
the graph using the incremental sequence (Fig. 8 a○). Next, the new encoding

23

tree of the updated graph is reconstructed using a static community detec-
tion method (Fig. 8 b○). Then, the updated Structural Data is extracted
(Fig. 8 c○), and finally, the updated structural entropy is computed by defi-
nition (Fig. 8 d○).

4.3. The Incremental Framework

4.3.1. Stage 1: Initialization

Given a graph G = (V , E) as a sparse matrix and its two-dimensional
encoding tree represented by a dictionary like {community ID 1: node list
1, community ID 2: node list 2, ...}, the Structural Data (Definition 9) can
be easily obtained and saved in the time complexity of O(|E|) (Fig. 8 i).
Then the Structural Expressions (Definition 10) can be calculated with the
saved Structural Data in O(|V|) (Fig. 8 ii). Overall, the Initialization stage
requires total time complexity O(|E|).

4.3.2. Stage 2: Measurement

In this stage, we first need to generate the Adjustment (Definition 11)
from G to G′. We provide two algorithms for generating Adjustments by the
proposed two dynamic adjustment strategies, namely the naive adjustment
generation algorithm (NAGA) and the node-shifting adjustment generation
algorithm (NSGA) (Fig. 8 1). The input of both two algorithms is the Struc-
tural Data of the original graph and an incremental sequence and the output
is an Adjustment. The pseudo-code of NAGA and NSGA are shown in Al-
gorithm 1 and Algorithm 2, respectively. The time complexity of NAGA is
O(n) because it needs to traverse n edges in the incremental sequence and it
only costs O(1) for each edge. In NSGA, we first need O(n) to initialize the
Adjustment (line 5-31). Second, in the node-shifting part (line 32-51), we
need to determine the OPC for all |I| involved nodes, which costs O(|A||I|).
This step is repeatedN times and the time cost is O(|A|(|I1|+|I2|+...+|IN |)),
where Ii denotes the number of the involved nodes in the i-th iteration. Since
|I1| ≤ n and |Ii+1| ≤ |Ii| most of the time, the total time complexity of NSGA
is O(nN |A|).

After getting the Adjustment, the updated two-dimensional structural
entropy of G′ can then be incrementally calculated by:

HT ′
(G′) = − 1

2m+ 2n
[Ŝ ′

N + Ŝ ′
C + Ŝ ′

G log(2m+ 2n)], (55)

24

Algorithm 1: Naive adjustment generation algorithm (NAGA)

Input : The Structural Data (di, Vα, gα, m, α(vi), and Tα) of G, and an
incremental sequence ξ from G to G′.

Output: The Adjustment (δ(vi), δk(d), δV (α), δg(α), n, Jn−c, and Jc−n)
from G to G′ by the naive adjustment strategy.

1 n := GetLength(ξ);
2 δ(vi) := 0, δk(d) := 0, δV (α) := 0, δg(α) := 0, D := ∅, A := ∅, Jn−c := ∅,

Jc−n := ∅;
3 Let the proxy maps be α̂(vi) := α(vi), vi ∈ V;
4 Let the proxy node level Structural Data be d̂v := dv, v ∈ V, where dv

denotes the degree of v;
5 for e = (u, v,+) ∈ ξ do
6 D := D ∪ {du, dv, du + 1, dv + 1};
7 δk(d̂u) := δk(d̂u)− 1, δk(d̂u + 1) := δk(d̂u + 1) + 1;

8 δk(d̂v) := δk(d̂v)− 1, δk(d̂v + 1) := δk(d̂v + 1) + 1;

9 d̂u := d̂u + 1, d̂v := d̂v + 1, δ(u) := δ(u) + 1, δ(v) := δ(v) + 1;
10 if α̂(u) == NULL then
11 α̂(u) := α̂(v);
12 Jn−c := Jn−c ∪ {(u, α̂(v))}, Jc−n := Jc−n ∪ {(α̂(v), u,+)};
13 end
14 if α̂(v) == NULL then
15 α̂(v) := α̂(u);
16 Jn−c := Jn−c ∪ {(v, α̂(u))}, Jc−n := Jc−n ∪ {(α̂(u), v,+)};
17 end
18 A := A ∪ {α̂(u), α̂(v)};
19 if α̂(v) == α̂(u) then
20 δV (α̂(v)) := δV (α̂(v)) + 2;
21 end
22 if α̂(v) ̸= α̂(u) then
23 δV (α̂(v)) := δV (α̂(v)) + 1, δV (α̂(u)) := δV (α̂(u)) + 1;
24 δg(α̂(v)) := δg(α̂(v)) + 1, δg(α̂(u)) := δg(α̂(u)) + 1;
25 end
26 end
27 return the Adjustment from G to G′.

25

Algorithm 2: Node-shifting adjustment generation algorithm (NSGA)

Input : The Structural Data (di, Vα, gα, m, α(vi), and Tα) of the
original graph G, an incremental sequence ξ from G to G′, and
the iteration number N .

Output: The Adjustment (δ(vi), δk(d), δV (α), δg(α), n, Jn−c, and Jc−n)
from G to G′.

1 n := GetLength(ξ), Jn−c := ∅, Jc−n := ∅ δ(vi) := 0, δk(d) := 0,
δV (α) := 0, δg(α) := 0;

2 Let the proxy maps be α̂(vi) := α(vi), ˆ̂α(vi) := α(vi), vi ∈ V;
3 Let the proxy node-level Structural Data be d̂v := dv, v ∈ V, where dv

denotes the degree of v;
4 Let the involved node set be I := ∅;
// Initialize the Adjustment

5 for e = (u, v, op) ∈ ξ do
6 I := I ∪ {u, v};
7 if op == + then
8 if u, v are both existing nodes in V then
9 Update the node-level Adjustment (using the proxy node-level

Structural Data, the same as below);
10 if α(u) and α(v) are both not None then
11 Update the community-level Adjustment without changing

the community partitioning;
12 else if α(u) or α(v) is None (suppose α(u) == None) then
13 δV (α(u)) := δV (α(u)) + 1; δg(α(u)) := δg(α(u)) + 1;
14 else if u or v does not exist (suppose u does not exist) then
15 α(u) := None;
16 Update the node-level Adjustment;
17 δV (α(u)) := δV (α(u)) + 1; δg(α(u)) := δg(α(u)) + 1;
18 Jn−c := Jn−c ∪ {(u,None)}; Jc−n := Jc−n ∪ {(None, u,+)};
19 else if u and v are both not existing then
20 α(u) := None, α(v) := None;
21 Update the node-level Adjustment;
22 Jn−c := Jn−c ∪ {(u,None)}; Jn−c := Jn−c ∪ {(v,None)};
23 Jc−n := Jc−n ∪ {(None, u,+)}; Jc−n := Jc−n ∪ {(None, u,+)};
24 Update the proxy node-level Strucutual Data as if the edge e is

added into the graph;
25 else if op == − then
26 Update the node-level and the community-level Adjustment

without changing the community partitioning;
27 Update the proxy node-level Strucutual Data as if the edge e is

removed from the graph;
28 end
29 end

// See the rest on the next page

26

// The rest of Algorithm 2
// Start node-shifting

32 τ := 1;
33 while τ ≤ N and I ̸= ∅ do
34 Ĩ := ∅, X := ∅;
35 for each node v ∈ I do
36 Determine the OPC of v denoted by α∗ using α̂(v);
37 X := X ∪ {(v, α∗)};
38 if α̂(v) ̸= α∗ then

39 Update the Adjustment as if v moves into Tα∗ using ˆ̂α(v);
40 for each node z ∈ Neighbor(v) do
41 if α̂(z) ̸= α∗ then
42 Ĩ := Ĩ ∪ {z};
43 end
44 end

45 ˆ̂α(v) := α∗;
46 end
47 end
48 for each (v, α) ∈ X do
49 α̂(v) := α;
50 end

51 I := Ĩ, τ := τ + 1;
52 end
53 return the Adjustment from G to G′.

where Ŝ ′
N , Ŝ

′
C , and Ŝ ′

G denote the incrementally updated Structural Expres-
sions:

Ŝ ′
N = ŜN +

∑
d∈D

δk(d)d log d;

Ŝ ′
C = ŜC +

∑
α∈A

[(gα + δg(α) + Vα + δV (α)) log(Vα + δV (α))− (gα + Vα) log Vα];

Ŝ ′
G = ŜG +

∑
α∈A

−δg(α).

(56)
To implement the above incremental calculation process, we provide the

Adjustment-based incremental updating algorithm (AIUA) (Fig. 8 2). Given
the input, i.e., the Structural Data and Structural Expressions of the original
graph and an Adjustment to the updated graph, we can compute the updated

27

two-dimensional structural entropy incrementally, and update the Structural
Data and Structural Expressions efficiently preparing for the next AIUA
process when a new Adjustment comes. The pseudo-code of AIUA is shown
in Algorithm 3. The time complexity of updating the Structural Data is
O(|ϕλ| + |A| + |Jn−c| + |Jc−n|) ≤ O(n). The time complexity of updating
the Structural Expressions is O(|D| + |A|) ≤ O(n). The time complexity
of calculating the updated two-dimensional structural entropy is O(1). In
summary, the total time complexity of AIUA is O(n).

4.4. Baseline: the Traditional Offline Algorithm

The traditional offline algorithm (TOA) reconstructs the encoding tree
for each updated graph and calculates the updated two-dimensional struc-
tural entropy by definition. TOA consists of the following four steps. Firstly,
it generates the updated graph by combining the original graph and the in-
cremental sequence (a○ in Fig. 8). Secondly, it partitions the graph node
set into communities using several different static community detection al-
gorithms, e.g., Infomap [16], Louvain [17], and Leiden [18], to construct
the two-dimensional encoding tree (b○ in Fig. 8). Thirdly, the node-level,
community-level, and graph-level Structural Data of the updated graph is
counted and saved (c○ in Fig. 8). Finally, the updated structural entropy
is computed via Eq. (14) (d○ in Fig. 8). The total time cost of TOA is
O(|E|+ n) plus the cost of the chosen community detection algorithm. The
pseudo-code of TOA is shown in Algorithm 4.

5. Extensions on More Complex Graphs

In this section, we discuss the feasibility of the extension to weighted
or directed graphs of our methods. First, we argue that the method for
undirected weighted graphs can be extended naturally from that of undi-
rected unweighted graphs. Second, we analyze the fundamental differences
between the paradigm of structural entropy incremental computation for
directed graphs and that for undirected graphs and present new methods
for calculating one-dimensional structural entropy incrementally on directed
weighted graphs.

5.1. Undirected Weighted Graphs

The incremental measurement method of structural entropy for undi-
rected weighted graphs can be intuitively and easily extended from the meth-
ods for undirected unweighted graphs proposed earlier. In the following, we

28

Algorithm 3: Adjustment-based incremental updating algorithm (AIUA)

Input : The Structural Data (di, Vα, gα, m, α(vi), and Tα) and the

Structural Expressions (ŜN , ŜC , and ŜG) of the original graph
G, and the Adjustment (δ(vi), δk(d), δV (α), δg(α), n, Jn−c, and
Jc−n) from G to G′.

Output: The updated two-dimensional structural entropy HT ′
(G′), the

updated Structural Data (d′i, V
′
α, g

′
α, m

′, α′(vi), and T ′
α), and

the updated Structural Expressions (Ŝ′
N , Ŝ′

C , and Ŝ′
G).

// Update the Structural Data
1 for each vi ∈ ϕλ do
2 d′i := di + δ(vi);
3 end
4 for each α ∈ A do
5 V ′

α := Vα + δV (α); g
′
α := gα + δg(α);

6 end
7 m′ = m+ n;
8 for each (v, α) ∈ Jn−c do
9 α′(v) := α;

10 end
11 T ′

α := Tα for all α ∈ A;
12 for each (α, v, op) ∈ Jc−n do
13 if op == + then
14 T ′

α := T ′
α ∪ {v};

15 end
16 if op == − then
17 T ′

α := T ′
α/{v};

18 end
19 end

// Update the Structural Expressions

20 Ŝ′
N := ŜN ; Ŝ′

C := ŜC ; Ŝ
′
G := ŜG;

21 for each d ∈ D do
22 S′

N := S′
N + δk(d)d log d;

23 end
24 for each α ∈ A do

25 Ŝ′
C := Ŝ′

C+(gα+δg(α)+Vα+δV (α)) log(Vα+δV (α))−(gα+Vα) log Vα;

26 Ŝ′
G := Ŝ′

G − δg(α);
27 end

// Calculate the updated two-dimensional structural entropy

28 HT ′
(G′) := − 1

2m+2n [Ŝ
′
N + Ŝ′

C + Ŝ′
G log(2m+ 2n)];

29 return HT ′
(G′), the updated Structural Data, and the updated

Structural Expressions.

29

Algorithm 4: Traditional Offline Algorithm (TOA)

Input : The original graph G and an incremental sequence ξ.
Output: The updated two-dimensional structural entropy HT ′

(G′).
1 Get the updated graph G′ by combining G and ξ;
2 Construct the two-dimensional encoding tree T ′.;
3 Get the degree d′i of each node vi ∈ V ′;
4 Get the volume V ′

α and the cut edge number g′α of α ∈ A′;
5 Get the total edge number m′ of G′;

6 Obtain HT ′
(G′) via Eq. (14);

7 return HT ′
(G′);

first introduce the definition of two-dimensional structural entropy of undi-
rected weighted graphs. Then we update the definition of the Adjustment
and propose an incremental formula for structural entropy computation un-
der the new circumstance.
Two-dimensional structural entropy of undirected weighted graphs.
An undirected weighted graph can be denoted as GW = (V , E , w), where
w(e) ∈ R+ represents the weight of e ∈ E . For any e /∈ E , let w(e) = 0. Ac-
cording to Li and Pan [6], the definition of the encoding tree for an undirected
weighted graph remains unchanged, and the two-dimensional structural en-
tropy of GW = (V , E , w) by its two-dimensional encoding tree T is defined
as

HT (GW) =
∑
αi∈A

(−gαi

Vλ

log
Vαi

Vλ

+
∑

vj∈Tαi

− dj
Vλ

log
dj
Vαi

), (57)

where new degree dj =
∑

vi∈N (vj)
w(vj, vi) (N (v) denotes the set of neighbors

of node v), new volume Vα =
∑

vi∈Tα
di, and new cut edge number gα is

replaced with the sum of the weights of the edges with exactly one endpoint
in Tα.
Adjustment definition of undirected weighted graphs. Due to the
continuity of edge weights, the original node level and graph level Adjust-
ment definitions (Definition 11) no longer apply. We renew the Adjustment
definitions of the two levels as follows:

1. (node level) the total weight change δ(vi) = d′i−di for each node vi ∈ ϕλ;

2. (graph level) the total weight change of the whole graph denoted by
δV (λ).

30

Incremental formula for structural entropy computation. According
to Eq. (57), the incremental computation formula for undirected weighted
graphs can then be formulated as (extended from Eq. (55))

HT ′
(G′

W) = − 1

Vλ + δV (λ)
[Ŝ ′

N + Ŝ ′
C + Ŝ ′

G log(Vλ + δV (λ))], (58)

where

Ŝ ′
N = ŜN +

∑
vk∈ϕλ

[(dk + δ(vk)) log(dk + δ(vk))− dk log dk];

Ŝ ′
C = ŜC +

∑
α∈A

[(gα + δg(α) + Vα + δV (α)) log(Vα + δV (α))− (gα + Vα) log Vα];

Ŝ ′
G = ŜG +

∑
α∈A

−δg(α).

(59)

5.2. Directed Weighted Graphs

The main method proposed in this paper is difficult to transfer to di-
rected graph scenarios since the measurement of the structural entropy of
directed graphs is fundamentally different from that of undirected graphs.
The key difference is that the directed graph needs to be transferred into a
transition matrix and stationary distribution needs computed. In this part,
we briefly present an incremental scheme for measuring the one-dimensional
structural entropy of directed weighted graphs since the incremental compu-
tation of two-dimensional structural entropy is quite complex. Specifically,
we first define the directed weighted graph and its non-negative matrix rep-
resentation. After that, we introduce the formula of the structural entropy
of directed weighted graphs [6]. Finally, we review the traditional methods,
namely Eigenvector Calculation and Global Aggregation, for accurately or
approximately calculating the one-dimensional structural entropy of directed
weighted graphs and then propose an incremental iterative approximation al-
gorithm, i.e., Local Propagation.

5.2.1. Directed Weighted Graph and Non-Negative Matrix

Definition 12 (Directed Weighted Graph). A directed weighted graph can
be denoted as GDW = (V , E , f), which satisfies the following properties:

(1) V = {v1, v2, ..., vN} is the node set;

31

(2) E denotes the set of directed edges e = (vi, vj);

(3) for each directed edge e = (vi, vj) ∈ E, f(e) = f(vi, vj) > 0 is the edge
weight from vi to vj. For e = (vi, vj) /∈ E, we denote f(e) = f(vi, vj) = 0.

The definition of directed weighted graphs is shown in Definition 12.
Given a directed weighted graph GDW = (V , E , f) with N nodes, we fix
the nodes in V in an order like v1, v2, ..., vN . For i, j ∈ {1, 2, .., N}, we define
aij = f(vi, vj). Then we can obtain a non-negative matrix A = (aij), named
as a matrix of GDW . In other words, a directed weighted graph can be repre-
sented by a non-negative matrix. The definition of the non-negative matrix
representation of directed weighted graphs is presented in Definition 13.

Definition 13 (Directed Weighted Graph Represented by Non-Negative Ma-
trix). A directed weighted graph GDW = (V , E , f) can be denoted as an N×N
non-negative matrix A = (aij) ∈ RN×N

≥0 , where for each i, j ∈ {1, 2, ..., N},
aij = f(vi, vj) ≥ 0.

5.2.2. One-Dimensional Structural Entropy of Directed Weighted Graphs

For direct graphs, the structural entropy is an uncertainty measurement
defined on strongly connected graphs whose matrices must be irreducible
(Definition 14).

Definition 14 (Irreducible Matrix). Given a non-negative matrix A ∈ RN×N
≥0 ,

if there exists a permutation matrix P such that

PAP =

[
X Y
0 Z

]
, (60)

where X and Z are square matrices, then A is said to be a reducible matrix,
otherwise A is an irreducible matrix.

Normalize each row in an irreducible matrix A, i.e., for each i and j, let

bij =
aij∑N
k=1 aik

. (61)

Then we can get a normalized irreducible matrix B = (bij) where the sum of
elements in each row is 1. bij is called the normalized edge weight. There is
a fundamental theorem for normalized irreducible matrices like B.

32

Theorem 5 (Perron Forbenius). If B ∈ RN×N
≥0 is an irreducible matrix where

for each i,
∑N

k=1 bik = 1, then

(1) the maximum eigenvalue of B is 1;

(2) the maximum eigenvalue of B has a unique left eigenvector;

(3) The unique left eigenvector of the maximum eigenvalue of B is a proba-
bility distribution, denoted by π = [π1, π2, ..., πN].

According to Theorem 5, the stationary distribution of A can then be
defined in Definition 9.

Definition 15 (Stationary Distribution). Let A ∈ RN×N
≥0 be an irreducible

matrix and B represents the normalized matrix of A where for each i,
∑N

k=1 bik
= 1. The stationary distribution of A is defined as the unique left eigenvector
of the maximum eigenvalue of B, denoted by π = [π1, π2, ..., πN].

Finally, the one-dimensional structural entropy (Definition 16) of an ir-
reducible non-negative matrix (or a directed weighted graph) is defined as
the Shannon entropy of the stationary distribution, which measures the total
amount of uncertainty embedded in a directed weighted graph.

Definition 16 (One-Dimensional Structural Entropy). Let A ∈ RN×N
≥0 be

an irreducible matrix and π = [π1, π2, ..., πN] is the stationary distribution of
A. The one-dimensional structural entropy is defined as

H1(A) = −
N∑
i=1

πi log2 πi. (62)

5.2.3. Incremental Measurement of One-Dimensional Structural Entropy

Generally, the exact value of one-dimensional structural entropy can be
obtained by Eq. (62) in O(n) given the stationary distribution. However,
calculating the exact stationary distribution needs to solve the eigenvectors
of the normalized irreducible matrix, which usually costs O(n3). In dynamic
scenarios, the directed weighted graph evolves as time passes by. When an
irreducible matrix A ∈ RN×N

≥0 representing a directed weighted graph gets an
incremental ∆A, it becomes an updated irreducible matrix A′ = A + ∆A.
Let n = ||∆A||0 denote the incremental size. Let B and B′ be the normalized

33

matrices of A and A′. Define ∆B = B′−B. We can calculate ∆B = (∆bij)
from A and ∆A by

∆bij = b′ij − bij =
a′ij∑N
k=1 a

′
ik

− aij∑N
k=1 aik

=
aij +∆aij

(
∑N

k=1 aik +∆aik)
− aij∑N

k=1 aik
.

(63)
Since a non-zero element of ∆A may influence at most all N elements of
a row in B, ||∆B||0, named as the normalized incremental size, will be no
more than nN . In addition, the number of the influenced rows in B, denoted
by nB, will be no more than n. In the following, three ways are listed to
compute the updated one-dimensional structural entropy.
Exact value calculation by Eigenvector Calculation. The first way
is to calculate the exact value of the updated one-dimensional structural
entropy by Definition 15 and 16. Specifically, the new exact stationary dis-
tribution π′ is first computed by solving the left eigenvector of the maximum
eigenvalue of B′. Then the updated one-dimensional structural entropy can
be calculated by

H1(A′) = −
N∑
i=1

π′
i log2 π

′
i. (64)

Generally, the total time complexity of this way is O(N3).
Approximate value calculation by Global Aggregation. According to
the theory of the Markov chain, the approximate stationary distribution can
be approximated by iteratively right-multiplying B′, i.e.,

π(θ) = πB′θ = π(B+∆B)θ, (65)

where θ ∈ N is the iteration number. Whenever π(θ) updates to π(θ+1) by
right-multiplying B+∆B, the updating process is equivalent to an informa-
tion aggregation operation on graphs along directed edges, i.e., for each node
vi,

π
(θ+1)
i =

∑
vj∈N (vi)

π
(θ)
j bji, (66)

where N (vi) denotes the neighbors of vi. Since for each iteration, all nodes
need to be updated, we name this calculation method as “Global Aggrega-
tion”. Finally, we compute the Shannon entropy of π(θ) as the approximate
one-dimensional structural entropy:

H1(A′) ≈ −
N∑
i=1

π
(θ)
i log2 π

(θ)
i . (67)

34

0.5→0.6

0.2→0.3

0.3→0.1

2 2 1' (0.6 0.5) = + −

4 4 1' (0.1 0.3) = + −

10 10 1' (0.3 0.2) = + −

0.5→0.6

0.2→0.3

0.3→0.1

1

2
4

3

5

6

7

13

12

11

8

9

10

76 76 6' (,)f v v = +

1 1 9 1 9' (,)f v v = +

...

...

(a) (c)

1212 1010

1111

1313
11

99

4 4 88

33

55

6 6

2 2
7 7

0.5→0.6

0.2→0.3

0.3→0.1

(b)

1212 10

1111

1313
11

9

4 88

33

55

6 6

2
7 7

7 27 27 2' (')b = + −

48 4 48 8' (')b = + −

49 4 49 9' (')b = + −

011 1 10 01 11 11)' ('b = + −

Figure 9: An illustration of Local Propagation. Note that all edge weights are normalized.
In the first step (a), the red arrows denote the edges whose weight changes after getting
an incremental, i.e., the involved edges. The stationary distributions of the involved nodes
(π2, π4, π10) are updated. In the second step (b), the direct successors of the last involved
nodes update their stationary distributions and become new involved nodes. Then the
procedure of (b) is repeated until the maximum iteration number is reached.

The total computational complexity of Global Aggregation is about O(θN2)
in the form of matrix multiplication using Eq. (65). Utilizing graph perspec-
tive (Eq. (66)), the time complexity can be reduced to O(θNd) = O(θ|E|),
where d denotes the mean direct successor number of all graph nodes.
Fast approximate value calculation by Local Propagation. In Global
Aggregation, all nodes and edges need to be traversed in each iteration, which
leads to high computational redundancy. In this part, we propose a new
method for fast approximation of the updated one-dimensional structural
entropy, namely Local Propagation. As the name suggests, the key idea is to
use an information propagation scheme involving only changed local nodes
to further reduce the redundancy of the aggregation process in Eq. (66).

In particular, Local Propagation contains two steps. In the first step
(Fig. 9(a)), we define the set of directed edges in B influenced by ∆B as
“involved edges” (red edges in Fig. 9(a)). We then let π(1) = π(0). For each
involved edge (vi, vj), the stationary distribution value of the pointed node
vj is updated by

π
(1)
j ← π

(1)
j +∆bijπi, (68)

35

and vj is added into an “involved nodes” set denoted by I(1). The time
complexity of the first step is linearly correlated to the size of the involved
edge set, i.e., O(nN). In the second step, we repeat the following procedure
for θ − 1 times. Let π(θ+1) = π(θ). For each node vi in I(θ), we update the
stationary distribution values of all vi’s direct successors (like Fig. 9(b)) by

π
(θ+1)
j ← π

(θ+1)
j + b′ij(π

(θ)
i − π

(θ−1)
i), vj ∈ Ns(vi), (69)

where Ns(vi) denotes the direct successors of vi. After all nodes in I(θ) are
traversed, I(θ) is updated as I(θ+1), i.e., all the direct successors of nodes of

the original set I(θ). For each iteration, the time complexity is O(|I(θ)|d(θ)),
where d

(θ)
denotes the mean direct successor number of nodes in I(θ). In

other words, let E(θ) (θ ≥ 1) denote the set of edges whose starting points

belong to I(θ), we have |I(θ)|d(θ) = |E(θ)|. Therefore, the time complexity of
each iteration is O(|E(θ)|) which must be less or equal to the complexity of
Eq. (66), O(|E|).

6. Experiments and Evaluations

In this section, we conduct extensive experiments based on the application
of dynamic graph real-time monitoring and community optimization. Below
we first describe the 3 artificial dynamic graph datasets and 3 real-world
datasets. Then we give the experimental results and analysis.

6.1. Artificial Datasets

First, we generate 3 different initial states of the dynamic graphs by uti-
lizing the random partition graph (Random) [19], gaussian random partition
graph (Gaussian) [20], and stochastic block model (SBM) [21] methods in
“Networkx” [22] (a Python library). Parameter descriptions of the three
methods are listed below:

• Random parameters: This method has 3 parameters. The first pa-
rameter is a list of community sizes S = [s1, s2, ...], which denotes the
node number of each community of the initial state. The other two
parameters are two probabilities pin and pac. Nodes in the same com-
munity are connected with pin and nodes across different communities
are connected with pac.

36

• Gaussian parameters: This method creates k communities each with
a size drawn from a normal distribution with mean s and variance
s/v. Nodes are connected within communities with probability pin and
between communities with probability pac.

• SBM parameters: This method partitions the nodes in communities
of given sizes S = [s1, s2, ...], and places edges between pairs of nodes
independently, with a probability that depends on the communities.

After that, we generate incremental sequences and updated graphs for
each initial state by Hawkes Process [23] referring to some settings of Zuo et
al. [24]. Hawkes Process [23] models discrete sequence events by assuming
that historical events can influence the occurrence of current events. In this
process, we first randomly choose a node x to be the target node (Fig. 10(t =
1)). Second, we add edges or nodes with given probabilities. Specifically, with
probability phn (Fig. 10(Node Addition)), we connect a new node with x.
With probability 1− phn (Fig. 10(Edge Addition)), we (1) use Node2vec [25]
to get embedding vectors of all nodes; (2) calculate the conditional intensity
function Λyi|x between x and each of its non-neighboring nodes y:

Λy|x(t) = −||ex − ey||2 +
∑
th<t

−||eh − ey||2 exp (−δx (t− th)) , (70)

x

Add a new node

connecting with x

x

Select a target node

x randomly

x

Select a target node

x randomly

Select a new target

node x randomly

1) Get node embeddings

using Node2vec

2) Calculate conditional intensity

function for each non-neighboring nodes

3) Select a non-neighboring nodes to

connect according to Softmax probability

Probability of

connecting x with yi :

|

()

()

i

i

y x

y x

y x

y

t
p

t

=

∣

∣

Select a new target

node x randomly
Final Updated Graph

Edge Addition

Node Addition

Node/Edge

Addition

Node/Edge

Addition
...

t = 1

t = 2 t = 3 t = T

phn

1 - phn

yex

ex
ey

xx
x

y6

y1

y2

y3

y4

y5

p
y3|xΛy|x(t)

x

x

Figure 10: The generation process of the artificial Hawkes datasets.

37

Table 2: Parameter Values of the Generated Initial States and Hawkes Process.
Parameter values

Random initial state S = [800, 1000, 1200, 1400, 1600], pin = 0.05, and pac = 0.001.
Gaussian initial state The total node number is 6000, s = 1000, v = 100, pin = 0.05, and pac = 0.001.
SBM initial state S = [800, 1000, 1200, 1400, 1600], pin ∼*U(0.002, 0.01), and pac ∼ U(0.01, 0.05).

Hawkes process The dimension of the embedding vectors is set as 16 and phn is 0.05.

* U denotes uniform distribution.

Table 3: Statistics Description of the Artificial and Real-World Datasets.

Datasets |V0| |E0| E(|∆V|) E(|∆E|) # of snapshots

Random-Hawkes 6,000 203,659 1,017 20,365 20
Gaussian-Hawkes 6,000 164,482 596 11,942 20
SBM-Hawkes 6,000 176,526 592 11,942 20

Cit-HepPh 25,656 132,119 235 10,727 20
DBLP 7,184 13,451 3,379 7,907 20

Facebook 14,094 72,809 2,233 26,000 20

where ex, ey refers to the embedding vectors of nodes x and y, h refers to the
historical neighbor nodes connected to x at time th before t, and δx refers to
the discount rate, defined in this paper as the number of neighbors of x; and
(3) add an edge between x and yi with the Softmax conditional probability:

pyi|x =
Λyi|x∑
y Λy|x

. (71)

Subsequently, we repeat the above two steps to generate incremental se-
quences and updated graphs (Fig. 10(t = 2, 3, ..., T)). The chosen parameter
settings of the initial states and Hawkes Process are described in Table 2.

6.2. Real-World Datasets

For the real-world datasets, we choose Cit-HepPh [26], DBLP [27], and
Facebook [28] to conduct our experiments. Cit-HepPh is a citation network
in the field of high-energy physics phenomenology from 1993 to 2003. DBLP
contains a co-authorship network of computer science papers from 1954 to
2015 in which authors are represented as vertices and co-authors are linked
by an edge. Facebook records the establishment process of the user friend-
ship relationship of about 52% Facebook users in New Orleans from 2006
to 2009. For each dataset, we cut out 21 consecutive snapshots (an initial

38

state and 20 updated graphs). Since structural entropy is only defined on
connected graphs, we only preserve the largest connected component for each
snapshot. Overall, the statistics of the artificial and real-world datasets are
briefly shown in Table 3.

6.3. Results and Analysis

6.3.1. Application: Dynamic Graph Real-Time Monitoring and Community
Optimization

In this application, we aim to optimize the community partitioning and
monitor the corresponding two-dimensional structural entropy by our incre-
mental algorithms, i.e., NAGA+AIUA and NSGA+AIUA, and the baseline
TOA to quantify the community quality in real-time for each snapshot of a
dynamic graph. Specifically, for each dataset, we first choose a static com-
munity detection method (referred to as static methods) from Infomap [16],
Louvain [17], and Leiden [18] to generate the initial state’s community parti-
tioning. In this paper, Louvain is complemented by the louvain communities
method in “Networkx” [22]. Infomap and Leiden are complemented by the
community infomap and the community leiden methods from the Python
library “igraph” [?], respectively. Louvain and Infomap algorithms take
default parameters while in Leiden we use “Modularity” as the objective
instead of the original setting “Constant Potts Model (CPM)”. This is be-
cause Leiden with CPM cannot effectively partition the communities on our
datasets, as all partitions generated by Leiden with CPM contain only one
node. Then we use NAGA+AIUA, NSGA+AIUA, and TOA to respectively
measure the updated two-dimensional structural entropy at each time stamp.
The default maximum iteration number of NSGA is set as 5 and the reason
is discussed in Section 6.3.3.

The experimental results are shown in Fig. 11 (on real-world datasets)
and Fig. 12 (on artificial datasets). Overall, the structural entropy obtained
by NSGA+AIUA based on the node-shifting strategy, is completely smaller
than that obtained by NAGA+AIUA based on the naive adjustment strategy,
in all settings. For example, compared with NAGA+AIUA, NSGA+AIUA
reduces the updated structural entropy by up to about 12% and 10% on
Facebook and DBLP respectively. This verifies that the node-shifting strat-
egy is theoretically and practically able to reduce the structural entropy and
represents that the strategy can obtain a significantly better encoding tree
(community partitioning) than the naive adjustment strategy.

39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

9.0

9.5

10.0

10.5

St
ru

ct
ur

al
 E

nt
ro

py

dataset = Cit-HepPh | static method = Infomap
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10.50

10.75

11.00

11.25

11.50

dataset = Cit-HepPh | static method = Louvain

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10.25

10.50

10.75

11.00

11.25

dataset = Cit-HepPh | static method = Leiden
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

5

6

7

8

9

St
ru

ct
ur

al
 E

nt
ro

py

dataset = DBLP | static method = Infomap
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

8

9

10

11
dataset = DBLP | static method = Louvain

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

7

8

9

10

11
dataset = DBLP | static method = Leiden

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

9

10

11

12

St
ru

ct
ur

al
 E

nt
ro

py

dataset = Facebook | static method = Infomap
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10.5

11.0

11.5

12.0

12.5

13.0
dataset = Facebook | static method = Louvain

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10.5

11.0

11.5

12.0

12.5

13.0
dataset = Facebook | static method = Leiden

NSGA+AIUA
NAGA+AIUA
TOA

Figure 11: The updated structural entropy measured by NAGA+AIUA, NSGA+AIUA,
and TOA on real-world datasets with different static methods. Lower structural entropy
represents better performance.

While maintaining high efficiency (evaluated in Section 6.3.3), our incre-
mental algorithms still exhibit a performance that is close to or better than
TOA. In Fig. 11, the performance of NSGA+AIUA is only slightly weaker
than TOA with Infomap on Cit-HepPh and Facebook. Further, it even
achieves lower structural entropy than the offline algorithm when Louvain
and Leiden are chosen. Two main reasons are listed as follows. (1) In the in-
cremental algorithms, the new community partitioning is obtained by locally
modifying the original partitioning of the initial state. While in TOA the
community partitioning is reconstructed globally from snapshots (updated
graphs) by the static methods. Although TOA spends a large amount of
time searching for optimal partitioning globally, there is no theoretical proof
that it must be better than local and greedy optimization used in incremental
algorithms. (2) Additionally, the optimization objectives of incremental algo-
rithms and TOA are different. The former focuses on the structural entropy
itself while the latter aims to optimize modularity (Louvain and Leiden) or
minimize the expected length of information transmission (Infomap).

From the experimental results on artificial datasets (Fig. 12), we can
conclude that our incremental algorithms have higher stability in the dynamic
calculation of structural entropy. In most cases, there are many mutations

40

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.20

0.15

0.10

0.05

0.00

SE
 -

SE
 o

f N
AG

A+
AI

UA

dataset = Random-Hawkes | static method = Infomap

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.10

0.05

0.00

0.05

0.10
dataset = Random-Hawkes | static method = Louvain

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.10

0.05

0.00

0.05

0.10
dataset = Random-Hawkes | static method = Leiden

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.00
0.25
0.50
0.75
1.00
1.25

SE
 -

SE
 o

f N
AG

A+
AI

UA

dataset = SBM-Hawkes | static method = Infomap
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.1

0.0

0.1

0.2

dataset = SBM-Hawkes | static method = Louvain
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.05

0.00

0.05

dataset = SBM-Hawkes | static method = Leiden
NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.25

0.20

0.15

0.10

0.05

0.00

SE
 -

SE
 o

f N
AG

A+
AI

UA

dataset = Gaussian-Hawkes | static method = Infomap

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.10

0.05

0.00

0.05

0.10
dataset = Gaussian-Hawkes | static method = Louvain

NSGA+AIUA
NAGA+AIUA
TOA

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

0.10

0.08

0.06

0.04

0.02

0.00
dataset = Gaussian-Hawkes | static method = Leiden

NSGA+AIUA
NAGA+AIUA
TOA

Figure 12: The updated structural entropy measured by NAGA+AIUA, NSGA+AIUA,
and TOA on artificial datasets with different static methods. Since the three curves for
the artificial datasets are closer to each other than that for the real-world datasets, all
displayed structural entropy values are subtracted from the structural entropy value of
NAGA+AIUA to better show the differences between the curves.

in the structural entropy value using TOA, while our algorithms maintain
a continuous and stable decrease. It is because TOA globally reconstructs
the community for each iteration so that small node or edge changes may
cause more influence. By contrast, our algorithms dynamically adjust the
community partitioning from the last snapshot, which affects only locally
involved nodes.

6.3.2. Hyperparameter Study

In this part, we evaluate the influence on the updated structural entropy
of different iteration numbers of the node-shifting adjustment strategy. We
use NSGA + AIUA with iteration number N = 3, 5, 7, 9 to measure the
mean updated structural entropy of the 20 updated graphs, respectively, on
each situation in Section 6.3.1. As we can see from Table 4, the updated
structural entropy decreases as the number of iterations increases most of
the time. The reason is that, as the number of iterations increases, more
nodes will shift to their OPC, which leads to the further reduction of the
structural entropy. This experiment also demonstrates that our node-shifting
adjustment strategy has excellent interpretability.

41

Table 4: The Updated Structural Entropy by Node-Shifting Adjustment Strategy with
Different Number of Iterations. Bold Number Denotes the Lowest Structural Entropy.

of iterations (N) N = 3 N = 5 N = 7 N = 9

Cit-HepPh
Infomap 9.7155 9.7126 9.7122 9.7120
Louvain 10.7804 10.7791 10.7786 10.7784
Leiden 10.7802 10.7792 10.7788 10.7786

DBLP
Infomap 7.3274 7.3255 7.3244 7.3242
Louvain 9.4851 9.4842 9.4841 9.4838
Leiden 9.3919 9.3917 9.3912 9.3909

Facebook
Infomap 10.2134 10.2075 10.2060 10.2055
Louvain 11.2946 11.2898 11.2876 11.2864
Leiden 11.3087 11.3052 11.3038 11.3030

Random-Hawkes
Infomap 11.7836* 11.7832 11.7831 11.7831
Louvain 11.7836* 11.7832 11.7831 11.7831
Leiden 11.7836* 11.7832 11.7831 11.7831

Gaussian-Hawkes
Infomap 11.3352 11.3348 11.3347 11.3346
Louvain 11.3352 11.3348 11.3347 11.3346
Leiden 11.3352 11.3348 11.3347 11.3346

SBM-Hawkes
Infomap 11.6596 11.6595 11.6595 11.6595
Louvain 11.6596 11.6595 11.6595 11.6595
Leiden 11.6596 11.6595 11.6595 11.6595

* The structural differences between different static methods on ar-
tificial Hawkes datasets are really small indicating that the initial
community partitionings of the three methods are almost the same.

6.3.3. Time Consumption Evaluation

Fig. 13 shows the time consumption comparison between our incremen-
tal algorithms, i.e. NAGA+AIUA and NSGA+AIUA (N = 3, 5, 7, 9), on all
6 datasets. The vertical axis in the figure represents the mean time con-
sumption of the chosen incremental algorithm across all 20 snapshots. The
horizontal axis represents 3 selected static methods. As we can see, the time
cost of NSGA+AIUA increases as the increase of iteration number N . In
addition, the time consumption of NAGA+AIUA is less than NSGA+AIUA
with N = 5 in most cases.

Table 5 shows the time comparison between our online algorithm NSGA+
AIUA (N = 5) and the offline algorithm TOA. As we can see from the
results, all our proposed incremental algorithms are significantly faster than
the existing static methods. Specifically, for example, NSGA+AIUA (N = 5)
obtain over 140.93x and 77.81x speed up on average on DBLP and SBM-
Hawkes, respectively, in contrast with the static method using Infomap.

42

Infomap Louvain Leiden
1.0

1.1

1.2

1.3

1.4

1.5
Ti

m
e

Co
st

 (s
)

Cit-HepPh
NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Infomap Louvain Leiden
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85
DBLP

NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Infomap Louvain Leiden
1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3
Facebook

NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Infomap Louvain Leiden

2.6

2.8

3.0

3.2

3.4

3.6

Ti
m

e
Co

st
 (s

)

Random-Hawkes
NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Infomap Louvain Leiden
1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0
Gaussian-Hawkes

NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Infomap Louvain Leiden
1.6

1.7

1.8

1.9

2.0

2.1

2.2
SBM-Hawkes

NAGA
NSGA (Iter = 3)
NSGA (Iter = 5)
NSGA (Iter = 7)
NSGA (Iter = 9)

Figure 13: Mean time consumption of NAGA+AIUA and NSGA+AIUA (N = 3, 5, 7, 9)
over 20 time stamps on each dataset under different static methods.

Table 5: Time Consumption Comparison of Our Incremental Algorithms (Online Time)
and the Baseline Traditional Offline Algorithm (Offline Time).

Dataset Cit-HepPh DBLP Facebook

Static Method Infomap Louvain Leiden Infomap Louvain Leiden Infomap Louvain Leiden

Online Time1 1.23s2 1.07s 1.09s 0.64s 0.62s 0.63s 1.92s 1.67s 1.69s
Offline Time 49.96s 6.42s 5.05s 49.80s 4.72s 12.30s 80.76s 8.15s 7.43s

Speedup3 ↑ 40.62x ↑ 6.00x ↑ 4.63x ↑ 77.81x ↑ 7.61x ↑ 19.52x ↑ 42.06x ↑ 4.88x ↑ 4.40x

Dataset Random-Hawkes Gaussian-Hawkes SBM-Hawkes

Static Method Infomap Louvain Leiden Infomap Louvain Leiden Infomap Louvain Leiden

Online Time 2.21s 2.48s 1.32s 1.48s 1.52s 1.55s 1.76s 1.55s 1.05s
Offline Time 58.37s 6.06s 3.02s 18.72s 4.08s 3.69s 248.04s 4.01s 3.02s

Speedup ↑ 26.41x ↑ 2.44x ↑ 2.28x ↑ 12.65x ↑ 2.68x ↑ 2.38x ↑ 140.93x ↑ 2.59x ↑ 2.88x
1 Time cost of NSGA+AIUA (N = 5).
2 Mean time consumption over 20 time stamps.
3 Speedup = Offline Time/Online Time.

The reason why we choose N = 5 as the default parameter is as follows.
As shown in Fig. 13, the time consumption of the node-shifting strategy rises
linearly with N . However, Table 4 shows that the rate of decline of structural
entropy gradually decreases from N = 3 to N = 9, and the structural entropy

43

values of N = 7 and N = 9 are very close. That is, the optimization efficiency
of structural entropy decreases with increasing N . To seek a balance between
efficiency and effectiveness, we take the compromise value N = 5.

6.3.4. Update Threshold Analysis

In scenarios with minimal changes, updating structural information might
not be necessary. In this part, we set a threshold for the magnitude of graph
changes before initiating updates to cut total time consumption. Specifically,
the updated structural entropy will not be calculated until the incremental
edge number exceeds a certain percentage (referred to as the update thresh-
old θ) of the edge number of the last updated graph. As we can see from
Table 6, the total time reduces 63%-87% with NAGA+AIUA and 47%-72%
with NSGA+AIUA when θ is set from 5% to 20%. Meanwhile, the fluctu-
ation of the final structural entropy remains within 0.15%, which indicates
that the threshold has little impact on the precision of structural entropy.
Overall, the setting of the updated threshold leads to improved efficiency and
better adaptation to graphs undergoing frequent alterations.

Table 6: The Influence on Total Time Consumption and Structural Entropy of Different
Updated Threshold θ on Cit-HepPh dataset with Infomap static method.

Updated Threshold θ = 0% θ = 5% θ = 10% θ = 15% θ = 20%

NA1 Total Time 32.89s 12.20s (↓ 63%) 2 9.16s (↓ 72%) 5.64s (↓ 83%) 4.44s (↓ 87%)

Final SE 10.9736 10.9687 (≤ 0.1%) 3 10.9690 (≤ 0.1%) 10.9668 (≤ 0.1%) 10.9681 (≤ 0.1%)

NS1 Total Time 24.83s 13.11s (↓ 47%) 10.52s (↓ 58%) 8.27s (↓ 67%) 6.93s (↓ 72%)

Final SE 10.0269 10.0243 (≤ 0.1%) 10.0186 (≤ 0.1%) 10.0352 (≤ 0.1%) 10.0419 (≤ 0.15%)

1 “NA/NS” represents NAGA/NSGA+AIUA.
2 The percentage reduction in time consumption compared to the case where θ = 0%.
3 The percentage fluctuation of the final structural entropy compared to the case where θ = 0%.

6.3.5. Robustness Analysis

In this subsection, we evaluate the robustness of the proposed frame-
work on 5 new artificial datasets with different noise conditions. Specifically,
we generate 5 initial states using the random partition method mentioned
in Section 6.1 with pac (representing the noise) ranging from 0.01 to 0.05
and S = [100, 100, 200, 200, 200]. For the convenience of comparison, the
total edge number of the initial state is kept nearly the same, fluctuating
between 37357 and 38175, by manually selecting the appropriate pin. After
the generation of the 5 initial states, we use the Hawkes Process to generate

44

74714 incremental edges, around 2 times the initial edges, and split them
into 20 sub-sequences as the incremental of 20 time stamps. Then we use
NAGA/NSGA+AIUA and TOA to calculate the structural entropy for all
20 updated graphs and the results are shown in Fig. 14.

0 5 10 15
Time Stamps

8.0

8.5

9.0

9.5

10.0

St
ru

ct
ur

al
 E

nt
ro

py

NAGA+AIUA

pac = 0.01
pac = 0.02
pac = 0.03
pac = 0.04
pac = 0.05

0 5 10 15
Time Stamps

8.0

8.5

9.0

9.5

10.0

NSGA+AIUA

pac = 0.01
pac = 0.02
pac = 0.03
pac = 0.04
pac = 0.05

0 5 10 15
Time Stamps

8

9

10

11
TOA

pac = 0.01
pac = 0.02
pac = 0.03
pac = 0.04
pac = 0.05

Figure 14: The structural entropy of NAGA/NSGA+AIUA and TOA with Infomap under
different initial state parameter pac representing different noise conditions.

As we can see from Fig. 14, the structural entropy curves using NAGA/
NSGA+AIUA are smooth no matter what pac takes. However, one or two
jumps in structural entropy take place when it comes to TOA. Furthermore,
the higher the noise (pac) is, the earlier and larger the structural entropy mu-
tates, and the more unstable the TOA algorithm is. Additionally, upon ex-
amination, the number of communities does not change, meaning that these
abrupt changes do not stem from changes in the number of communities,
but due to dramatic changes in their content. Therefore, we can conclude
that our algorithm maintains the structural entropy at a stable and lower
level due to the property of keeping the original community structure from
changing drastically, showing high robustness to the increasing noise.

In addition, we note that the structural entropy curve gradually shifts
upward as pac increases. This is because the numbers of edges of the initial
states have slight errors. Specifically, the larger the pac, the more initial edges
there are (from 37357 to 38175).

6.3.6. Gap between Incre-2dSE and the Current Static Structural Entropy
Measurement Method

In this part, we try to study the gap between Incre-2dSE and the current
static algorithms. The current mainstream static algorithm for structural
entropy measurement is named structural entropy minimization (SEM) [6],

45

...

b) Construct One-Dimensional

Encoding Tree

...

...

d) Repeatedly Merge the Best Pair

towards Minimized Structural Entropy

...

e) Final Two-Dimensional Encoding Tree

a) Grapha) Graph

...

...

c) Construct Initialized Two-

Dimensional Encoding Tree

Figure 15: An illustration of two-dimensional structural entropy minimization process.

which is a greedy k-dimensional encoding tree construction algorithm for
static graphs whose objective function is structural entropy. Fig. 15 gives
an illustration of the SEM algorithm in two-dimensional cases (2d-SEM).
Fig. 15(a) is an example graph. We first construct a one-dimensional encod-
ing tree for this graph (Fig. 15(b)). The one-dimensional encoding tree has
one root and |V| leaf nodes. Next, we add a successor node to each leaf node
to construct an initialized two-dimensional encoding tree (Fig. 15(c)). Then
we select the best pair of 1-height nodes to merge them which minimizes
the structural entropy (Fig. 15(d)). At last, We repeat this merging step
until the structural entropy doesn’t go down to get the final two-dimensional
encoding tree (Fig. 15(e)).

We measure the structural entropy of Incre-2dSE (NAGA/NSGA+AIUA)
and 2d-SEM 2 through all timestamps like Section 6.3.1 on the six datasets
mentioned in Table 3. According to our experimental results (Fig. 16), there
is a gap between the structural entropy of 2d-SEM and our dynamic frame-
work Incre-2dSE in some cases. Specifically, on all datasets except DBLP,
the structural entropy of NAGA+AIUA is higher than but very close to 2d-
SEM. On DBLP, NAGA+AIUA is better than 2d-SEM. On the contrary,
NSGA+AIUA performs significantly better than 2d-SEM on all datasets. In
addition, the gap between NSGA+AIUA and 2d-SEM is gradually increas-
ing on Cit-HepPh and Facebook, is gradually decreasing on Random-Hawkes
and Gaussian-Hawkes, and remains almost unchanged on DBLP and SBM-

2https://github.com/RingBDStack/SITool/tree/main/python

46

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10

11

12

St
ru

ct
ur

al
 E

nt
ro

py

dataset = Cit-HepPh | static method = 2d-SEM

NSGA+AIUA
NAGA+AIUA
2d-SEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

7

8

9

10
dataset = DBLP | static method = 2d-SEM

NSGA+AIUA
NAGA+AIUA
2d-SEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10

11

12

13

dataset = Facebook | static method = 2d-SEM
NSGA+AIUA
NAGA+AIUA
2d-SEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

11

12

13

St
ru

ct
ur

al
 E

nt
ro

py

dataset = Random-Hawkes | static method = 2d-SEM

NSGA+AIUA
NAGA+AIUA
2d-SEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

11.5

12.0

12.5

13.0
dataset = SBM-Hawkes | static method = 2d-SEM

NSGA+AIUA
NAGA+AIUA
2d-SEM

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time Stamps

10.5

11.0

11.5

12.0

12.5

13.0
dataset = Gaussian-Hawkes | static method = 2d-SEM

NSGA+AIUA
NAGA+AIUA
2d-SEM

Figure 16: An illustration of two-dimensional structural entropy minimization process.

Hawkes. The reason why there is a gap between Incre-2dSE and 2d-SEM is
the same as the reason why there is a gap between Incre-2dSE and TOA in
Section 6.3.1—Incre-2dSE updates the community and encoding tree locally
and incrementally while 2d-SEM constructs encoding trees globally from
scratch for each snapshot.

6.3.7. Convergence Evaluation

In this part, we conduct a statistical experiment to confirm the conver-
gence of the Local Difference and its first-order absolute moment. We first
generate artificial original graphs with increasing total edge numbers from
480 to 24000. Based on each original graph, we generate 30 incremental se-
quences with size n sampling from a normal distribution with a mean of 100
and a standard deviation of 10. These incremental sequences are generated by
repeatedly adding edges within a community with probability ppin ∈ [0, 0.8),
adding edges across two random communities with probability ppac ∈ [0, 0.1),
and adding nodes with probability pn = 1 − ppin − ppac. We then count the
Local Difference and its upper bound. The results are shown in Fig. 17. As
the total edge number increases from 1 to 50 times, the mean Local Differ-
ence gradually decreases by 95.98% (from 1.08 to 0.04), respectively, and is
always positive. This solidly supports the convergence of the Local Differ-
ence and its first-order absolute moment. Moreover, the Local Difference is
always below its upper bound, which confirms the validity of our bound.

47

103 104

Total edge number of the original graph

0.0

0.5

1.0

1.5

2.0

2.5

Tw
o-

di
m

en
sio

na
l L

oc
al

 D
iff

er
en

ce Mean Local Difference
Max/min Local Difference
Mean upper bound
Max/min upper bound

Figure 17: The statistics of the Local Difference and its upper bound.

6.3.8. One-Dimensional Structural Entropy Measurement of Directed Weighted
Graphs

In this subsection, we evaluate the time consumption of the two approxi-
mate one-dimensional structural entropy measurement methods, Global Ag-
gregation and Local Propagation, on two artificial datasets, i.e., Erdős-Rényi
(ER) [29] and Cycle.
ER initial state. The initial state of the ER dataset is created by the Erdős-
Rényi model implemented by erdos renyi graph in Networkx [22] which has
two main parameters. One is the number of nodes n and the other is the
probability of edge creation p. In this dataset, the Erdős-Rényi model chooses
each of the n(n− 1) possible directed edges with probability p.
Cycle initial state. The Cycle dataset’s initial state contains cyclically con-
nected nodes, where the edge direction is in increasing order. For example, a
cycle dataset {v0, v1, ..., vn} has n+1 direct edges {(v0, v1), (v1, v2), ..., (vn−1, vn)
, (vn, v0)}.
Weight and incremental settings. For the initial states of ER and Cycle
datasets, we first set all edge weights as random integers in [1, 10]. Then we
generate several incremental sequences with sizes 500, 2000, 5000, and 10000,
respectively, corresponding to four different updated graphs from each initial
state. Specifically, for each incremental edge, we randomly choose two nodes
to add a direct edge between them with random weight in [1, 10]. If the edge
exists, we randomly change its weight as another value in [1, 10].
Experimental settings. For each initial state, we use Global Aggregation
with iteration number 50 to calculate the initial stationary distribution from
a uniform distribution. For each initial state, we then use Global Aggregation
and Local Propagation to iteratively calculate the structural entropy of the
4 updated graphs and record the time consumption of each iteration.

48

Experimental results. The time consumption experimental results are
shown in Fig. 18. On the ER dataset, Local Propagation is faster than
Global Aggregation only in the first several iterations. Besides, the time
consumption is lower when n is smaller. This is because the time consumption
of each iteration of Local Propagation is approximately linear with the size
of the involved node set. The smaller the incremental size n, the number of
the involved nodes is less. However, since the mean number of the successors
of ER graphs is more than 1, the involved nodes will rapidly expand into
the entire node set. Therefore, when the iteration number is larger than
5, the efficiency of Local Propagation is nearly the same as that of Global
Aggregation. On the contrary, in the Cycle dataset, the mean number of the
direct successors of each node is nearly 1. That is, the size of the involved
node set will not change, so the time consumption of Local Propagation
will not increase as the iteration number grows. In addition, obviously the
larger the incremental size n, the higher the time consumption whatever the
iteration number is.

0 10 20 30 40 50
Iteration Number

0.00

0.05

0.10

0.15

0.20

Ti
m

e
Co

ns
um

pt
io

n
(s

)

ER

Global Aggregation
Local Propagation (n = 500)
Local Propagation (n = 2000)
Local Propagation (n = 5000)
Local Propagation (n = 10000)

0 10 20 30 40 50
Iteration Number

0.00

0.02

0.04

0.06

0.08

0.10

Ti
m

e
Co

ns
um

pt
io

n
(s

)

Cycle

Global Aggregation
Local Propagation (n = 500)
Local Propagation (n = 2000)
Local Propagation (n = 5000)
Local Propagation (n = 10000)

Figure 18: Time consumption of Global Aggregation and Local Propagation on ER and
Cycle dataset. Note that only the time consumption of Global Aggregation of n = 500 is
shown since the theoretical time consumption of different incremental size n is the same.

7. Related Works

Graph Entropy. Many efforts have been devoted to measuring the infor-
mation in graphs. The graph entropy was first defined and investigated by
Rashevsky [2], Trucco [3], and Mowshowitz [4]. After that, a different graph

49

entropy closely related to information and coding theory was proposed by
Körner[5]. Later, Bianconi [30] introduced the concept of “structural en-
tropy of network ensembles”, known as the Gibbs entropy. Anand et al. [31]
proposed the Shannon entropy for network ensembles. Braunstein et al. [32]
proposed the von Neumann graph entropy based on the combinatorial graph
Laplacian matrix. These three metrics [30, 31, 32] are defined by statistical
mechanics and are used to compare different graph models. However, most
of the current graph entropy measures are based on the Shannon entropy def-
inition for probability distributions, which has significant limitations when
applied to graphs [33]. Recently, many efforts have been devoted to capturing
the dynamic changes of graphs, e.g., the research based on the Algorithmic
Information Theory [34, 35]. The structural entropy method used in this
paper proposed by Li et al. [6] provides an approach to measuring the high-
dimensional information embedded in graphs and can further decode the
graph’s hierarchical abstracting by an optimal encoding tree. This method
is widely used in the fields of graph learning [14], reinforcement learning [36],
and social networks [37].
Fast Computation for Graph Entropy. Chen et al. [38] proposed a fast
incremental von Neumann graph entropy computational framework, which
reduces the cubic complexity to linear complexity in the number of nodes
and edges. Liu et al. [39, 40] used the structural entropy [6] as a proxy
of von Neumann graph entropy for the latter’s fast computation and also
implemented an incremental method for one-dimensional structural entropy
on undirected graphs. In this paper, we mainly focus on the incremental
computation for two-dimensional structural entropy based on our dynamic
adjustment strategies for encoding trees. Besides, we also discuss the compu-
tation method for one-dimensional structural entropy on directed weighted
graphs.

8. Conclusion

In this paper, we propose two novel dynamic adjustment strategies, namely
the naive adjustment strategy and the node-shifting adjustment strategy, to
analyze the updated structural entropy and incrementally adjust the orig-
inal community partitioning towards a lower structural entropy. We also
implement an incremental framework, i.e., supporting the real-time mea-
surement of the updated two-dimensional structural entropy. Further, we
discuss the extension of our proposed methods to weighted graphs and the

50

one-dimensional structural entropy computation on directed and weighted
graphs. In the future, we aim to develop more dynamic adjustment strate-
gies for hierarchical community partitioning and incremental measurement
algorithms for higher dimensional structural entropy.

Acknowledgments

This work is supported by the National Key R&D Program of China
through grant 2022YFB3104703, NSFC through grants 62322202 and 61932002,
Beijing Natural Science Foundation through grant 4222030, Guangdong Ba-
sic and Applied Basic Research Foundation through grant 2023B1515120020,
CCF-DiDi GAIA Collaborative Research Funds for Young Scholars, and the
Fundamental Research Funds for the Central Universities.

References

[1] C. Shannon, The lattice theory of information, Transactions of the IRE
Professional Group on Information Theory 1 (1) (1953) 105–107.

[2] N. Rashevsky, Life, information theory, and topology, The Bulletin of
Mathematical Biophysics 17 (3) (1955) 229–235.

[3] E. Trucco, A note on the information content of graphs, The Bulletin of
Mathematical Biophysics 18 (2) (1956) 129–135.

[4] A. Mowshowitz, Entropy and the complexity of graphs, Tech. rep.
(1967).

[5] J. Körner, Coding of an information source having ambiguous alphabet
and the entropy of graphs, in: Proceedings of the Prague Conference on
Information Theory, 1973, pp. 411–425.

[6] A. Li, Y. Pan, Structural information and dynamical complexity of net-
works, IEEE Transactions on Information Theory 62 (6) (2016) 3290–
3339.

[7] A. Li, Mathematical Principles of Information World: Calculuses of
Information, Preprint., 2022.

51

[8] A. Li, X. Yin, B. Xu, D. Wang, J. Han, Y. Wei, Y. Deng, Y. Xiong,
Z. Zhang, Decoding topologically associating domains with ultra-low res-
olution hi-c data by graph structural entropy, Nature Communications
9 (1) (2018) 1–12.

[9] Y. W. Zhang, M. B. Wang, S. C. Li, Supertad: robust detection of
hierarchical topologically associated domains with optimized structural
information, Genome Biology 22 (1) (2021) 1–20.

[10] Y. Liu, J. Liu, Z. Zhang, L. Zhu, A. Li, Rem: From structural entropy to
community structure deception, in: Proceedings of the NeuIPS, Vol. 32,
2019, pp. 12918–12928.

[11] A. Li, X. Zhang, Y. Pan, Resistance maximization principle for defend-
ing networks against virus attack, Physica A: Statistical Mechanics and
its Applications 466 (2017) 211–223.

[12] Z. Yang, G. Zhang, J. Wu, J. Yang, Q. Z. Sheng, H. Peng, A. Li,
S. Xue, J. Su, Minimum entropy principle guided graph neural net-
works, in: Proceedings of the sixteenth ACM international conference
on web search and data mining, 2023, pp. 114–122.

[13] J. Wu, X. Chen, K. Xu, S. Li, Structural entropy guided graph hi-
erarchical pooling, in: Proceedings of the ICML, Vol. 162, 2022, pp.
24017–24030.

[14] D. Zou, H. Peng, X. Huang, R. Yang, J. Li, J. Wu, C. Liu, P. S. Yu, Se-
gsl: A general and effective graph structure learning framework through
structural entropy optimization, in: Proceedings of the ACM Web Con-
ference 2023, 2023, pp. 499–510.

[15] F. Harary, G. Gupta, Dynamic graph models, Mathematical and Com-
puter Modelling 25 (7) (1997) 79–87.

[16] M. Rosvall, C. T. Bergstrom, Maps of random walks on complex net-
works reveal community structure, Proceedings of the national academy
of sciences 105 (4) (2008) 1118–1123.

[17] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfold-
ing of communities in large networks, Journal of Statistical Mechanics:
Theory and Experiment 2008 (10) (2008) P10008.

52

[18] V. A. Traag, L. Waltman, N. J. Van Eck, From louvain to leiden: guaran-
teeing well-connected communities, Scientific reports 9 (1) (2019) 5233.

[19] S. Fortunato, Community detection in graphs, Physics Reports 486 (3-5)
(2009).

[20] U. Brandes, M. Gaertler, D. Wagner, Experiments on graph clustering
algorithms, in: European symposium on algorithms, Springer, 2003, pp.
568–579.

[21] P. W. Holland, K. B. Laskey, S. Leinhardt, Stochastic blockmodels:
First steps, Social networks 5 (2) (1983) 109–137.

[22] A. Hagberg, P. Swart, D. S Chult, Exploring network structure, dynam-
ics, and function using networkx, Tech. rep. (2008).

[23] A. G. Hawkes, Spectra of some self-exciting and mutually exciting point
processes, Biometrika 58 (1) (1971) 83–90.

[24] Y. Zuo, G. Liu, H. Lin, J. Guo, X. Hu, J. Wu, Embedding temporal
network via neighborhood formation, in: Proceedings of the SIGKDD,
2018, pp. 2857–2866.

[25] A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: Proceedings of the SIGKDD, 2016, pp. 855–864.

[26] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: densification
laws, shrinking diameters and possible explanations, in: Proceedings
of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining, 2005, pp. 177–187.

[27] D. A. Bader, H. Meyerhenke, P. Sanders, D. Wagner, Graph partitioning
and graph clustering, Vol. 588, American Mathematical Society Provi-
dence, RI, 2013.

[28] B. Viswanath, A. Mislove, M. Cha, K. P. Gummadi, On the evolution of
user interaction in facebook, in: Proceedings of the 2nd ACM workshop
on Online social networks, 2009, pp. 37–42.

[29] P. ERDdS, A. R&wi, On random graphs i, Publ. math. debrecen 6 (290-
297) (1959) 18.

53

[30] G. Bianconi, Entropy of network ensembles, Physical Review E 79 (3)
(2009) 036114.

[31] K. Anand, G. Bianconi, Entropy measures for networks: Toward an
information theory of complex topologies, Physical Review E 80 (4)
(2009) 045102.

[32] S. L. Braunstein, S. Ghosh, S. Severini, The laplacian of a graph as a
density matrix: a basic combinatorial approach to separability of mixed
states, Annals of Combinatorics 10 (3) (2006) 291–317.

[33] H. Zenil, N. A. Kiani, J. Tegnér, Low-algorithmic-complexity entropy-
deceiving graphs, Physical Review E 96 (1) (2017) 012308.

[34] H. Zenil, N. A. Kiani, A. A. Zea, J. Tegnér, Causal deconvolution by
algorithmic generative models, Nature Machine Intelligence 1 (1) (2019)
58–66.

[35] H. Zenil, N. A. Kiani, F. Marabita, Y. Deng, S. Elias, A. Schmidt,
G. Ball, J. Tegner, An algorithmic information calculus for causal dis-
covery and reprogramming systems, Iscience 19 (2019) 1160–1172.

[36] X. Zeng, H. Peng, A. Li, Effective and stable role-based multi-agent
collaboration by structural information principles, in: Proceedings of
the AAAI conference on artificial intelligence, Vol. 37, 2023, pp. 11772–
11780.

[37] Y. Cao, H. Peng, Z. Yu, P. S. Yu, Hierarchical and incremental struc-
tural entropy minimization for unsupervised social event detection, in:
Proceedings of the AAAI conference on artificial intelligence, 2024, pp.
1–9.

[38] P.-Y. Chen, L. Wu, S. Liu, I. Rajapakse, Fast incremental von neumann
graph entropy computation: Theory, algorithm, and applications, in:
Proceedings of the ICML, 2019, pp. 1091–1101.

[39] X. Liu, L. Fu, X. Wang, C. Zhou, On the similarity between von neu-
mann graph entropy and structural information: Interpretation, com-
putation, and applications, IEEE Transactions on Information Theory
68 (4) (2022) 2182–2202.

54

[40] X. Liu, L. Fu, X. Wang, Bridging the gap between von neumann graph
entropy and structural information: Theory and applications, in: Pro-
ceedings of the WWW, 2021, pp. 3699–3710.

55

Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered

as potential competing interests:

